Mohammad Salehian , Jonathan Moores , Jonathan Goldie , Isra' Ibrahim , Carlota Mendez Torrecillas , Ishwari Wale , Faisal Abbas , Natalie Maclean , John Robertson , Alastair Florence , Daniel Markl
{"title":"A hybrid system of mixture models for the prediction of particle size and shape, density, and flowability of pharmaceutical powder blends","authors":"Mohammad Salehian , Jonathan Moores , Jonathan Goldie , Isra' Ibrahim , Carlota Mendez Torrecillas , Ishwari Wale , Faisal Abbas , Natalie Maclean , John Robertson , Alastair Florence , Daniel Markl","doi":"10.1016/j.ijpx.2024.100298","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed. Two data-driven models were developed to estimate the mixture's tapped density and flowability (represented by the flow function coefficient, FFC) using data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions in combination with the true density, and bulk density as input data, saving time and material by removing the need for resource-intensive shear testing for raw components. A model-based uncertainty quantification technique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid system of models accurately predicts the mixture properties of different formulations and components with often <span><math><msup><mi>R</mi><mn>2</mn></msup><mo>></mo><mn>0.8</mn></math></span>, utilising raw material properties to reduce time and material resources on preparing and characterising blends.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100298"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000707","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed. Two data-driven models were developed to estimate the mixture's tapped density and flowability (represented by the flow function coefficient, FFC) using data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions in combination with the true density, and bulk density as input data, saving time and material by removing the need for resource-intensive shear testing for raw components. A model-based uncertainty quantification technique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid system of models accurately predicts the mixture properties of different formulations and components with often , utilising raw material properties to reduce time and material resources on preparing and characterising blends.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.