An energy stable finite element method for the nonlocal electron heat transport model

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaodong Yuan , Aimin Chen , Rui Guo , Maojun Li
{"title":"An energy stable finite element method for the nonlocal electron heat transport model","authors":"Xiaodong Yuan ,&nbsp;Aimin Chen ,&nbsp;Rui Guo ,&nbsp;Maojun Li","doi":"10.1016/j.camwa.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the nonlocal electron heat transport model in one and two dimensions is considered and studied. An energy stability finite element method is designed to discretize the nonlocal electron heat transport model. For the nonlinear discrete system, both Newton iteration and implicit-explicit (IMEX) schemes are employed to solve it. Then the energy stability is proved in semi-discrete and fully-discrete schemes. Numerical examples are presented to verify the energy stability of the proposed schemes as well as the optimal convergence order in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"177 ","pages":"Pages 23-40"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the nonlocal electron heat transport model in one and two dimensions is considered and studied. An energy stability finite element method is designed to discretize the nonlocal electron heat transport model. For the nonlinear discrete system, both Newton iteration and implicit-explicit (IMEX) schemes are employed to solve it. Then the energy stability is proved in semi-discrete and fully-discrete schemes. Numerical examples are presented to verify the energy stability of the proposed schemes as well as the optimal convergence order in L, L2 and H1 norm.
非局部电子热传输模型的能量稳定有限元法
本文考虑并研究了一维和二维的非局部电子热传输模型。本文设计了一种能量稳定性有限元方法来离散非局部电子热传输模型。对于非线性离散系统,采用牛顿迭代和隐式-显式(IMEX)两种方案进行求解。然后证明了半离散和全离散方案的能量稳定性。通过数值实例验证了所提方案的能量稳定性,以及在 L∞、L2 和 H1 规范下的最佳收敛阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信