Jussara V.R. Vieira, Tassia C.P. Pereira, Carlos H.F. da Cunha, Davi D. Petrolini, Ana C.M. Tello, Alice M. Lima, Yasmin O. Carvalho, André L.R. Garcia, Ernesto A. Urquieta-Gonzalez, João B.O. dos Santos, Patrícia M. Lima, José M.C. Bueno
{"title":"Isothermal conversion of methane to methanol over Cu-CHA using different oxidants","authors":"Jussara V.R. Vieira, Tassia C.P. Pereira, Carlos H.F. da Cunha, Davi D. Petrolini, Ana C.M. Tello, Alice M. Lima, Yasmin O. Carvalho, André L.R. Garcia, Ernesto A. Urquieta-Gonzalez, João B.O. dos Santos, Patrícia M. Lima, José M.C. Bueno","doi":"10.1016/j.cattod.2024.115121","DOIUrl":null,"url":null,"abstract":"<div><div>Methane oxidation to methanol in cyclic processes using CuO-zeolites has traditionally employed O<sub>2</sub> and N<sub>2</sub>O as oxidants. This study explores the use of Cu-CHA zeolite, demonstrating that CO<sub>2</sub> can substitute O<sub>2</sub> in an isothermal reaction at 400 °C, analogous to previous findings using Cu-MAZ. The use of <em>in situ</em> UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and density functional theory (DFT) theoretical calculations identified the formation of a binuclear copper hydroxide complex, Z-[CuOH-HOCu]<sup>2+</sup>-Z, on the Cu-CHA. Initial treatment using CO<sub>2</sub> led to marginally superior catalytic activity, compared to the use of O<sub>2</sub> alone, indicating the stability of the Z-[CuOH-HOCu]<sup>2+</sup>-Z complex against self-reduction at 400 °C. In subsequent cycles, activation with O<sub>2</sub> facilitated the oxidation of adsorbed methanol, yielding water and reconstituting the active sites. Conversely, activation with CO<sub>2</sub> led to the partial desorption of methanol, precluding water production and subsequent catalyst regeneration. The findings suggested that both O<sub>2</sub> and CO<sub>2</sub> activations necessitated a post-reaction water extraction step, followed by thermal treatment to replenish the active sites. Importantly, the results indicated that CO<sub>2</sub> could be used as a viable alternative oxidant to O<sub>2</sub> in this catalytic process, potentially enhancing the sustainability of industrial methanol production.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115121"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006151","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Methane oxidation to methanol in cyclic processes using CuO-zeolites has traditionally employed O2 and N2O as oxidants. This study explores the use of Cu-CHA zeolite, demonstrating that CO2 can substitute O2 in an isothermal reaction at 400 °C, analogous to previous findings using Cu-MAZ. The use of in situ UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and density functional theory (DFT) theoretical calculations identified the formation of a binuclear copper hydroxide complex, Z-[CuOH-HOCu]2+-Z, on the Cu-CHA. Initial treatment using CO2 led to marginally superior catalytic activity, compared to the use of O2 alone, indicating the stability of the Z-[CuOH-HOCu]2+-Z complex against self-reduction at 400 °C. In subsequent cycles, activation with O2 facilitated the oxidation of adsorbed methanol, yielding water and reconstituting the active sites. Conversely, activation with CO2 led to the partial desorption of methanol, precluding water production and subsequent catalyst regeneration. The findings suggested that both O2 and CO2 activations necessitated a post-reaction water extraction step, followed by thermal treatment to replenish the active sites. Importantly, the results indicated that CO2 could be used as a viable alternative oxidant to O2 in this catalytic process, potentially enhancing the sustainability of industrial methanol production.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.