On quadrature for singular integral operators with complex symmetric quadratic forms

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Jeremy Hoskins , Manas Rachh , Bowei Wu
{"title":"On quadrature for singular integral operators with complex symmetric quadratic forms","authors":"Jeremy Hoskins ,&nbsp;Manas Rachh ,&nbsp;Bowei Wu","doi":"10.1016/j.acha.2024.101721","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes a trapezoidal quadrature method for the discretization of weakly singular, and hypersingular boundary integral operators with complex symmetric quadratic forms. Such integral operators naturally arise when complex coordinate methods or complexified contour methods are used for the solution of time-harmonic acoustic and electromagnetic interface problems in three dimensions. The quadrature is an extension of a locally corrected punctured trapezoidal rule in parameter space wherein the correction weights are determined by fitting moments of error in the punctured trapezoidal rule, which is known analytically in terms of the Epstein zeta function. In this work, we analyze the analytic continuation of the Epstein zeta function and the generalized Wigner limits to complex quadratic forms; this analysis is essential to apply the fitting procedure for computing the correction weights. We illustrate the high-order convergence of this approach through several numerical examples.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"74 ","pages":"Article 101721"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000988","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a trapezoidal quadrature method for the discretization of weakly singular, and hypersingular boundary integral operators with complex symmetric quadratic forms. Such integral operators naturally arise when complex coordinate methods or complexified contour methods are used for the solution of time-harmonic acoustic and electromagnetic interface problems in three dimensions. The quadrature is an extension of a locally corrected punctured trapezoidal rule in parameter space wherein the correction weights are determined by fitting moments of error in the punctured trapezoidal rule, which is known analytically in terms of the Epstein zeta function. In this work, we analyze the analytic continuation of the Epstein zeta function and the generalized Wigner limits to complex quadratic forms; this analysis is essential to apply the fitting procedure for computing the correction weights. We illustrate the high-order convergence of this approach through several numerical examples.
关于具有复对称二次形式的奇异积分算子的正交性
本文介绍了一种梯形正交方法,用于离散化具有复对称二次方形式的弱奇异和超奇异边界积分算子。当使用复坐标法或复等值线法求解三维时谐声学和电磁界面问题时,自然会出现此类积分算子。正交是局部修正的点阵梯形法则在参数空间中的扩展,其中修正权重由点阵梯形法则中的误差拟合矩决定,而误差拟合矩是通过爱泼斯坦兹塔函数解析得知的。在这项工作中,我们分析了爱泼斯坦zeta函数的解析延续和广义维格纳极限的复二次型;这一分析对于应用拟合程序计算修正权重至关重要。我们通过几个数值示例说明了这种方法的高阶收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信