Dynamic event trigger adaptive horizon model free robust predictive control for hovercraft heading tracking using interval predictor

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Weiqiu Zhang, Yujie Xu, Mingyu Fu, Guorong Zhang, Zhipeng Fan
{"title":"Dynamic event trigger adaptive horizon model free robust predictive control for hovercraft heading tracking using interval predictor","authors":"Weiqiu Zhang,&nbsp;Yujie Xu,&nbsp;Mingyu Fu,&nbsp;Guorong Zhang,&nbsp;Zhipeng Fan","doi":"10.1016/j.oceaneng.2024.119602","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a new dynamic event trigger adaptive horizon-based interval predictor-model free robust predictive control (IP-MFARPC) method for hovercraft heading tracking control problem without precise modeling under disturbance. Firstly, based on the input-output (I/O) data from the past period, we use partial form dynamic linearization (PFDL) to establish an online data model for the hovercraft, which is more accurate than the compact form dynamic linearization (CFDL) method. Secondly, the proposed method uses interval observers and predictors (IO&amp;IP) to solve the prediction model offline and uses online rolling optimization to solve the optimal control sequence. During the solution process, the offline prediction model is utilized, and LMI is employed to transform robust L2 gain constraints, enhancing the control method's anti-interference ability and the accuracy of the rolling optimization process. Additionally, dynamic event triggering and adaptive prediction step mechanisms are introduced to improve online solving speed without compromising control performance. Finally, simulation results demonstrate that the IP-MFRAPC method effectively tracks the variable heading of the hovercraft under disturbances, offering faster solving times compared to methods without these mechanisms.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"314 ","pages":"Article 119602"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801824029408","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new dynamic event trigger adaptive horizon-based interval predictor-model free robust predictive control (IP-MFARPC) method for hovercraft heading tracking control problem without precise modeling under disturbance. Firstly, based on the input-output (I/O) data from the past period, we use partial form dynamic linearization (PFDL) to establish an online data model for the hovercraft, which is more accurate than the compact form dynamic linearization (CFDL) method. Secondly, the proposed method uses interval observers and predictors (IO&IP) to solve the prediction model offline and uses online rolling optimization to solve the optimal control sequence. During the solution process, the offline prediction model is utilized, and LMI is employed to transform robust L2 gain constraints, enhancing the control method's anti-interference ability and the accuracy of the rolling optimization process. Additionally, dynamic event triggering and adaptive prediction step mechanisms are introduced to improve online solving speed without compromising control performance. Finally, simulation results demonstrate that the IP-MFRAPC method effectively tracks the variable heading of the hovercraft under disturbances, offering faster solving times compared to methods without these mechanisms.
利用区间预测器对气垫船航向跟踪进行动态事件触发自适应地平线模型自由鲁棒预测控制
本文提出了一种新的基于动态事件触发自适应视距的区间预测器-无模型鲁棒预测控制(IP-MFARPC)方法,用于解决扰动下无精确建模的气垫船航向跟踪控制问题。首先,基于过去一段时间的输入输出(I/O)数据,我们使用部分形式动态线性化(PFDL)建立气垫船的在线数据模型,这比紧凑形式动态线性化(CFDL)方法更精确。其次,建议的方法使用区间观测器和预测器(IO&IP)离线求解预测模型,并使用在线滚动优化来求解最优控制序列。在求解过程中,利用离线预测模型,采用 LMI 转换鲁棒 L2 增益约束,增强了控制方法的抗干扰能力和滚动优化过程的准确性。此外,还引入了动态事件触发和自适应预测步骤机制,在不影响控制性能的前提下提高了在线求解速度。最后,仿真结果表明,IP-MFRAPC 方法能有效跟踪气垫船在干扰下的可变航向,与没有这些机制的方法相比,解算速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信