Techno-economic feasibility analysis and optimisation of on/off-grid wind-biogas-CHP hybrid energy system for the electrification of university campus: A case study
{"title":"Techno-economic feasibility analysis and optimisation of on/off-grid wind-biogas-CHP hybrid energy system for the electrification of university campus: A case study","authors":"Ilter Sahin Aktas","doi":"10.1016/j.renene.2024.121792","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides a comprehensive feasibility analysis of a hybrid energy system with different configurations to meet electricity and thermal load demand at the University of Southampton campus. The suggested hybrid energy system (HES) comprises wind turbine, biogas generator, battery, CHP natural gas-generator, thermal load controller, boiler, and converter and is simulated in Homer Pro software. In addition, a comparative analysis between stand-alone and on-grid HES is presented. The results indicate that the grid-connected HES is significantly more cost-effective, with a 45 % reduction in cost of energy (COE) and %15.5 decrease in net present cost (NPC) compared to the off-grid system, which amounts to 0.03359 $/kWh and 467M$, respectively. The grid-connected HES is not only more eco-friendly in terms of greenhouse gas emissions (GHG) and produces 19 % less emissions annually compared to the grid-independent system, but it also effectively achieves a positive return on investment (ROI) of %45 with 2.3 years of payback time. Considering the university's total emissions of 38.56 kT CO<sub>2</sub>e, the proposed on-grid hybrid system has the potential to lessen GHG emissions by 91.2 %.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121792"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018603","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper provides a comprehensive feasibility analysis of a hybrid energy system with different configurations to meet electricity and thermal load demand at the University of Southampton campus. The suggested hybrid energy system (HES) comprises wind turbine, biogas generator, battery, CHP natural gas-generator, thermal load controller, boiler, and converter and is simulated in Homer Pro software. In addition, a comparative analysis between stand-alone and on-grid HES is presented. The results indicate that the grid-connected HES is significantly more cost-effective, with a 45 % reduction in cost of energy (COE) and %15.5 decrease in net present cost (NPC) compared to the off-grid system, which amounts to 0.03359 $/kWh and 467M$, respectively. The grid-connected HES is not only more eco-friendly in terms of greenhouse gas emissions (GHG) and produces 19 % less emissions annually compared to the grid-independent system, but it also effectively achieves a positive return on investment (ROI) of %45 with 2.3 years of payback time. Considering the university's total emissions of 38.56 kT CO2e, the proposed on-grid hybrid system has the potential to lessen GHG emissions by 91.2 %.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.