An agent-based modeling approach for simulating solar PV adoption: A case study of Irish dairy farms

IF 4.2 Q2 ENERGY & FUELS
Iias Faiud, Michael Schukat, Karl Mason
{"title":"An agent-based modeling approach for simulating solar PV adoption: A case study of Irish dairy farms","authors":"Iias Faiud,&nbsp;Michael Schukat,&nbsp;Karl Mason","doi":"10.1016/j.ref.2024.100653","DOIUrl":null,"url":null,"abstract":"<div><div>The agricultural sector faces increasing pressure to enhance energy efficiency in light of escalating electricity costs. This study aims to simulate the adoption of photovoltaic (PV) systems in Ireland’s dairy sector using an agent-based modeling (ABM) approach to facilitate PV uptake among dairy farmers. The model incorporates factors such as grid energy costs, annual electricity consumption, annual solar generation, PV cost, and maintenance expenses to predict PV adoption likelihood. Findings reveal that by 2022, about 2.41% of Irish dairy farmers had adopted PV systems, a figure only 0.41 pp higher than the actual observed rate, validating the ABM’s accuracy. Additionally, the research forecasts future adoption rates of PV systems among dairy farmers, demonstrating the efficacy of ABM in understanding and predicting renewable energy uptake in the dairy sector. These insights can inform policy suggestions to promote renewable energy adoption, ultimately enhancing energy efficiency and sustainability in dairy sector.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"51 ","pages":"Article 100653"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008424001170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The agricultural sector faces increasing pressure to enhance energy efficiency in light of escalating electricity costs. This study aims to simulate the adoption of photovoltaic (PV) systems in Ireland’s dairy sector using an agent-based modeling (ABM) approach to facilitate PV uptake among dairy farmers. The model incorporates factors such as grid energy costs, annual electricity consumption, annual solar generation, PV cost, and maintenance expenses to predict PV adoption likelihood. Findings reveal that by 2022, about 2.41% of Irish dairy farmers had adopted PV systems, a figure only 0.41 pp higher than the actual observed rate, validating the ABM’s accuracy. Additionally, the research forecasts future adoption rates of PV systems among dairy farmers, demonstrating the efficacy of ABM in understanding and predicting renewable energy uptake in the dairy sector. These insights can inform policy suggestions to promote renewable energy adoption, ultimately enhancing energy efficiency and sustainability in dairy sector.
模拟太阳能光伏应用的代理建模方法:爱尔兰奶牛场案例研究
鉴于电力成本不断攀升,农业部门面临着越来越大的提高能源效率的压力。本研究旨在利用基于代理的建模(ABM)方法,模拟爱尔兰奶牛业采用光伏系统的情况,以促进奶牛场主采用光伏系统。该模型纳入了电网能源成本、年耗电量、年太阳能发电量、光伏成本和维护费用等因素,以预测采用光伏系统的可能性。研究结果显示,到 2022 年,约有 2.41% 的爱尔兰奶农采用了光伏系统,这一数字仅比实际观察到的比例高 0.41 个百分点,验证了 ABM 的准确性。此外,研究还预测了未来奶牛场主采用光伏系统的比例,证明了 ABM 在了解和预测奶牛场可再生能源利用率方面的有效性。这些见解可以为促进可再生能源采用的政策建议提供参考,最终提高奶业的能源效率和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信