A knowledge-driven many-objective algorithm for energy-efficient distributed heterogeneous hybrid flowshop scheduling with lot-streaming

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sanyan Chen, Xuewu Wang, Ye Wang, Xingsheng Gu
{"title":"A knowledge-driven many-objective algorithm for energy-efficient distributed heterogeneous hybrid flowshop scheduling with lot-streaming","authors":"Sanyan Chen,&nbsp;Xuewu Wang,&nbsp;Ye Wang,&nbsp;Xingsheng Gu","doi":"10.1016/j.swevo.2024.101771","DOIUrl":null,"url":null,"abstract":"<div><div>More enterprises are enhancing their productive capacity to keep up with the rapidly shifting market demands. Meanwhile, with increasing environmental consciousness, sustainable manufacturing has drawn greater attention. In this paper, the many-objective energy-efficient distributed heterogeneous hybrid flowshop scheduling problem with lot-streaming (DHHFSPLS) is investigated, where the number of sublots is variable. To settle this challenging issue, a mathematical model is established, and a knowledge-driven many-objective optimization evolutionary algorithm (KDMaOEA) is proposed for minimizing makespan, total earliness, total tardiness and total energy consumption. In the KDMaOEA, a knowledge-driven multiple populations collaborative search strategy is devised to strengthen exploitation capabilities. Specifically, the population is divided into five subpopulations, where four superior subpopulations are employed to facilitate the optimization of each objective and one inferior subpopulation learns from four superior subpopulations to effectively utilize the optimization knowledge. Furthermore, an adaptive switching-based environmental selection strategy is fulfilled to guarantee the distribution and convergence of the solution set. Finally, extensive numerical simulations are undertaken to verify the effectiveness of the KDMaOEA in solving the many-objective energy-efficient DHHFSPLS.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101771"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224003092","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

More enterprises are enhancing their productive capacity to keep up with the rapidly shifting market demands. Meanwhile, with increasing environmental consciousness, sustainable manufacturing has drawn greater attention. In this paper, the many-objective energy-efficient distributed heterogeneous hybrid flowshop scheduling problem with lot-streaming (DHHFSPLS) is investigated, where the number of sublots is variable. To settle this challenging issue, a mathematical model is established, and a knowledge-driven many-objective optimization evolutionary algorithm (KDMaOEA) is proposed for minimizing makespan, total earliness, total tardiness and total energy consumption. In the KDMaOEA, a knowledge-driven multiple populations collaborative search strategy is devised to strengthen exploitation capabilities. Specifically, the population is divided into five subpopulations, where four superior subpopulations are employed to facilitate the optimization of each objective and one inferior subpopulation learns from four superior subpopulations to effectively utilize the optimization knowledge. Furthermore, an adaptive switching-based environmental selection strategy is fulfilled to guarantee the distribution and convergence of the solution set. Finally, extensive numerical simulations are undertaken to verify the effectiveness of the KDMaOEA in solving the many-objective energy-efficient DHHFSPLS.
带批量流的高能效分布式异构混合流动车间调度的知识驱动多目标算法
越来越多的企业正在提高生产能力,以适应快速变化的市场需求。与此同时,随着环保意识的增强,可持续生产也越来越受到重视。本文研究了具有批次流的多目标节能分布式异构混合流车间调度问题(DHHFSPLS),其中子批次的数量是可变的。为了解决这个具有挑战性的问题,本文建立了一个数学模型,并提出了一种知识驱动的多目标优化进化算法(KDMaOEA),用于最小化工期(makespan)、总提前率(total earliness)、总延迟率(total tardiness)和总能耗(total energy consumption)。在 KDMaOEA 中,设计了一种知识驱动的多种群协同搜索策略,以加强利用能力。具体来说,种群被分为五个子种群,其中四个优势子种群用于促进每个目标的优化,一个劣势子种群从四个优势子种群中学习,以有效利用优化知识。此外,还采用了基于自适应切换的环境选择策略,以保证解集的分布和收敛性。最后,大量的数值模拟验证了 KDMaOEA 在解决多目标高能效 DHHFSPLS 方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信