Fuhao Gao , Lingling Huang , Weifeng Gao , Longyue Li , Shuqi Wang , Maoguo Gong , Ling Wang
{"title":"Transferring knowledge by budget online learning for multiobjective multitasking optimization","authors":"Fuhao Gao , Lingling Huang , Weifeng Gao , Longyue Li , Shuqi Wang , Maoguo Gong , Ling Wang","doi":"10.1016/j.swevo.2024.101765","DOIUrl":null,"url":null,"abstract":"<div><div>Multiobjective multitasking optimization (MO-MTO) has attracted increasing attention in the evolutionary computation field. Evolutionary multitasking (EMT) algorithms can improve the overall performance of multiple multiobjective optimization tasks through transferring knowledge among tasks. Negative transfer resulting from the indeterminacy of the transferred knowledge may bring about the degradation of the algorithm performance. Identifying the valuable knowledge to transfer by learning the historical samples is a feasible way to reduce negative transfer. Taking this into account, this paper proposes a budget online learning based EMT algorithm for MO-MTO problems. Specifically, by regarding the historical transferred solutions as samples, a classifier would be trained to identified the valuable knowledge. The solutions which are considered containing valuable knowledge will have more opportunity to be transfer. For the samples arrive in the form of streaming data, the classifier would be updated in a budget online learning way during the evolution process to address the concept drift problem. Furthermore, the exceptional case that the classifier fails to identify the valuable knowledge is considered. Experimental results on two MO-MTO test suits show that the proposed algorithm achieves highly competitive performance compared with several traditional and state-of-the-art EMT methods.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101765"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224003031","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multiobjective multitasking optimization (MO-MTO) has attracted increasing attention in the evolutionary computation field. Evolutionary multitasking (EMT) algorithms can improve the overall performance of multiple multiobjective optimization tasks through transferring knowledge among tasks. Negative transfer resulting from the indeterminacy of the transferred knowledge may bring about the degradation of the algorithm performance. Identifying the valuable knowledge to transfer by learning the historical samples is a feasible way to reduce negative transfer. Taking this into account, this paper proposes a budget online learning based EMT algorithm for MO-MTO problems. Specifically, by regarding the historical transferred solutions as samples, a classifier would be trained to identified the valuable knowledge. The solutions which are considered containing valuable knowledge will have more opportunity to be transfer. For the samples arrive in the form of streaming data, the classifier would be updated in a budget online learning way during the evolution process to address the concept drift problem. Furthermore, the exceptional case that the classifier fails to identify the valuable knowledge is considered. Experimental results on two MO-MTO test suits show that the proposed algorithm achieves highly competitive performance compared with several traditional and state-of-the-art EMT methods.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.