Monte Carlo calculation of LiF:Mg,Cu,P thermoluminescent dosimeter correction factors for 18F, 131I and 90Y submersion dosimetry

IF 1.6 3区 物理与天体物理 Q2 NUCLEAR SCIENCE & TECHNOLOGY
Ahad Ollah Ezzati , Farzane Mohajeri , Matthew Studenski
{"title":"Monte Carlo calculation of LiF:Mg,Cu,P thermoluminescent dosimeter correction factors for 18F, 131I and 90Y submersion dosimetry","authors":"Ahad Ollah Ezzati ,&nbsp;Farzane Mohajeri ,&nbsp;Matthew Studenski","doi":"10.1016/j.radmeas.2024.107331","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate measurement of absorbed dose from beta-emitting therapeutic radionuclides is important to ensure safe and effective delivery to patients. Thermoluminescent dosimeters (TLDs) are a commercially available option to measure dose, but several confounding factors complicate this process. To preserve their integrity during the measurement, it is necessary to enclose TLDs in a waterproof envelope, which unavoidably attenuates the beta particles. Additionally, the exclusion of radioactivity in the volume occupied by the TLD, the finite volume effect, further complicates the measurement. The purpose of this study is to calculate the correction factors to convert the TLD measured dose to the absorbed dose in water, D<sub>w</sub>, for three common radionuclides and the LiF:Mg,Cu,P TLD (Thermo Fisher Scientific™, Waltham, MA). Correction factors were calculated for four different size LiF:Mg,Cu,P TLD dosimeters inside a PMMA cylindrical phantom with <sup>90</sup>YCl<sub>3</sub>, C<sub>6</sub>H<sub>11</sub><sup>18</sup>FO<sub>5</sub>, and Na<sup>131</sup>I aqueous solutions. Specific correction factors are required to account for finite volume, energy, and geometry for each LiF:Mg,Cu,P TLD size, radionuclide, and phantom geometry combination. Additionally, for the PMMA phantom, specific material correction factors are also required to account for the additional materials inside the phantom. The absorbed dose calculations performed with LiF:Mg,Cu,P TLDs showed good agreement with Monte Carlo simulations. Overall, these findings contribute to improving the accuracy of absorbed dose measurements from beta-emitting radionuclides in liquid solutions using TLDs.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107331"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002798","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate measurement of absorbed dose from beta-emitting therapeutic radionuclides is important to ensure safe and effective delivery to patients. Thermoluminescent dosimeters (TLDs) are a commercially available option to measure dose, but several confounding factors complicate this process. To preserve their integrity during the measurement, it is necessary to enclose TLDs in a waterproof envelope, which unavoidably attenuates the beta particles. Additionally, the exclusion of radioactivity in the volume occupied by the TLD, the finite volume effect, further complicates the measurement. The purpose of this study is to calculate the correction factors to convert the TLD measured dose to the absorbed dose in water, Dw, for three common radionuclides and the LiF:Mg,Cu,P TLD (Thermo Fisher Scientific™, Waltham, MA). Correction factors were calculated for four different size LiF:Mg,Cu,P TLD dosimeters inside a PMMA cylindrical phantom with 90YCl3, C6H1118FO5, and Na131I aqueous solutions. Specific correction factors are required to account for finite volume, energy, and geometry for each LiF:Mg,Cu,P TLD size, radionuclide, and phantom geometry combination. Additionally, for the PMMA phantom, specific material correction factors are also required to account for the additional materials inside the phantom. The absorbed dose calculations performed with LiF:Mg,Cu,P TLDs showed good agreement with Monte Carlo simulations. Overall, these findings contribute to improving the accuracy of absorbed dose measurements from beta-emitting radionuclides in liquid solutions using TLDs.
用于 18F、131I 和 90Y 浸没剂量测定的 LiF:Mg、Cu、P 热释光剂量计校正因子的蒙特卡洛计算
准确测量β发射治疗放射性核素的吸收剂量对于确保向患者安全有效地提供治疗非常重要。热释光剂量计(TLD)是测量剂量的一种商用方法,但有几个干扰因素使测量过程变得复杂。为了在测量过程中保持热释光剂量计的完整性,有必要将其封装在防水外壳中,这不可避免地会削弱β粒子。此外,在 TLD 所占的体积内排除放射性,即有限体积效应,也使测量变得更加复杂。本研究的目的是计算校正因子,以便将三种常见放射性核素和 LiF:Mg,Cu,P TLD(Thermo Fisher Scientific™,马萨诸塞州沃尔瑟姆)的 TLD 测量剂量转换为水中吸收剂量 Dw。在含有 90YCl3、C6H1118FO5 和 Na131I 水溶液的 PMMA 圆柱形模型内,计算了四种不同尺寸的 LiF:Mg,Cu,P TLD 剂量计的校正因子。对于每种 LiF:Mg,Cu,P TLD 尺寸、放射性核素和模型几何组合,都需要特定的校正因子来考虑有限体积、能量和几何形状。此外,对于 PMMA 模体,还需要特定的材料修正系数来考虑模体内的额外材料。使用 LiF:Mg,Cu,P TLD 进行的吸收剂量计算与蒙特卡罗模拟结果显示出良好的一致性。总之,这些发现有助于提高使用 TLD 测量液态溶液中β发射放射性核素吸收剂量的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation Measurements
Radiation Measurements 工程技术-核科学技术
CiteScore
4.10
自引率
20.00%
发文量
116
审稿时长
48 days
期刊介绍: The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal. Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信