Biocompatible piezoelectric lattice materials with ultrasound-regulated multimodal responses

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Annan Chen , Jin Su , Muran Zhou , Mingpei Cang , Yinjin Li , Yunsong Shi , Zhen Zhang , Yangzhi Zhu , Bin Su , Yang Liu , Zuo-Guang Ye , Yusheng Shi , Jüergen Röedel , Huachen Cui , Haibo Zhang , Kun Zhou , Jian Lu , Chunze Yan
{"title":"Biocompatible piezoelectric lattice materials with ultrasound-regulated multimodal responses","authors":"Annan Chen ,&nbsp;Jin Su ,&nbsp;Muran Zhou ,&nbsp;Mingpei Cang ,&nbsp;Yinjin Li ,&nbsp;Yunsong Shi ,&nbsp;Zhen Zhang ,&nbsp;Yangzhi Zhu ,&nbsp;Bin Su ,&nbsp;Yang Liu ,&nbsp;Zuo-Guang Ye ,&nbsp;Yusheng Shi ,&nbsp;Jüergen Röedel ,&nbsp;Huachen Cui ,&nbsp;Haibo Zhang ,&nbsp;Kun Zhou ,&nbsp;Jian Lu ,&nbsp;Chunze Yan","doi":"10.1016/j.mser.2024.100876","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric biomaterials, capable of converting electrical energy to mechanical energy and vice versa, are desirable for implantable devices that can achieve biosensing, tissue regeneration, anti-infection, and tumor treatment. However, their low piezoelectricity, simple geometry, and monotonous functionality remain challenging towards practical applications. Here, we report the design and additive manufacturing of a series of biocompatible piezoelectric lattice materials with bone-mimicking designs and ultrasound-regulated electrical responses. Barium calcium zirconate titanate (BCZT) with a piezoelectric coefficient <em>d</em><sub>33</sub> up to 580 pC/N was synthesized and used as the parent material of the lattices for additive manufacturing. The as-fabricated BCZT lattices have compressive strength comparable to native trabecular bones, making them promising candidates for implantation and <em>in vivo</em> activation. We show that the lattices allow on-demand activation of anti-tumor or osteogenic functions with programmable non-invasive ultrasound stimuli, both <em>in vitro</em> and <em>in vivo</em>. Our findings provide new insights and a widely applicable strategy for developing versatile, non-invasive, and regulatable biomedical devices via bio-mimicking designs and additive manufacturing.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100876"},"PeriodicalIF":31.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24001062","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric biomaterials, capable of converting electrical energy to mechanical energy and vice versa, are desirable for implantable devices that can achieve biosensing, tissue regeneration, anti-infection, and tumor treatment. However, their low piezoelectricity, simple geometry, and monotonous functionality remain challenging towards practical applications. Here, we report the design and additive manufacturing of a series of biocompatible piezoelectric lattice materials with bone-mimicking designs and ultrasound-regulated electrical responses. Barium calcium zirconate titanate (BCZT) with a piezoelectric coefficient d33 up to 580 pC/N was synthesized and used as the parent material of the lattices for additive manufacturing. The as-fabricated BCZT lattices have compressive strength comparable to native trabecular bones, making them promising candidates for implantation and in vivo activation. We show that the lattices allow on-demand activation of anti-tumor or osteogenic functions with programmable non-invasive ultrasound stimuli, both in vitro and in vivo. Our findings provide new insights and a widely applicable strategy for developing versatile, non-invasive, and regulatable biomedical devices via bio-mimicking designs and additive manufacturing.
具有超声波调控多模态响应的生物兼容压电晶格材料
压电生物材料能够将电能转化为机械能,反之亦然,是实现生物传感、组织再生、抗感染和肿瘤治疗的植入式装置的理想材料。然而,它们的压电性低、几何形状简单、功能单一,在实际应用中仍面临挑战。在此,我们报告了一系列具有仿骨设计和超声调节电响应的生物相容性压电晶格材料的设计和增材制造。我们合成了压电系数 d33 高达 580 pC/N 的锆酸钙钛酸钡(BCZT),并将其用作增材制造晶格的母体材料。制成的 BCZT 晶格具有与原生骨小梁相当的抗压强度,因此很有希望用于植入和体内激活。我们的研究表明,通过可编程的非侵入性超声刺激,这种晶格可在体外和体内按需激活抗肿瘤或成骨功能。我们的研究结果为通过生物模拟设计和增材制造开发多功能、非侵入性和可调节的生物医学设备提供了新的见解和广泛适用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信