Mei-Xia Zhao , Bo Meng , Juan-Juan Zheng , Ning Yang , Fang-Jing Liu
{"title":"N-doped hierarchically porous carbon from lignite-derived residue for high-performance supercapacitor","authors":"Mei-Xia Zhao , Bo Meng , Juan-Juan Zheng , Ning Yang , Fang-Jing Liu","doi":"10.1016/j.diamond.2024.111781","DOIUrl":null,"url":null,"abstract":"<div><div>Lignite-derived residue with cross-linked aromatic structure and heteroatom groups is an alternative and low-cost precursor for porous carbon. Herein, N-doped hierarchically porous carbon (NDHPC) was prepared by KOH activation from lignite-derived residue using ZnO as the template and dicyandiamide as the nitrogen source. The optimal NDHPC presents hierarchically porous stacked layered structure with high specific surface area (2648.18 m<sup>2</sup>/g) and contains abundant O/N functional groups, making it promising candidate as the electrode material. Introducing nitrogen can provide more pseudocapacitors and meanwhile improve the wettability of the NDHPC, thus enhancing electrochemical performance. The optimal NDHPC exhibits a high specific capacitance of 336 F g<sup>−1</sup> at the current density of 0.5 A g<sup>−1</sup> with good rate performance. Additionally, the assembled NDHPC symmetrical supercapacitor presents outstanding cycle stability with 96.2 % capacitance retention and possesses energy density of 7.85 Wh kg<sup>−1</sup> at power density of 250 W kg<sup>−1</sup>. This study offers an effective and low-cost approach to fully utilize the organic matter in coal-derived residue for preparing supercapacitor electrode materials.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111781"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009944","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Lignite-derived residue with cross-linked aromatic structure and heteroatom groups is an alternative and low-cost precursor for porous carbon. Herein, N-doped hierarchically porous carbon (NDHPC) was prepared by KOH activation from lignite-derived residue using ZnO as the template and dicyandiamide as the nitrogen source. The optimal NDHPC presents hierarchically porous stacked layered structure with high specific surface area (2648.18 m2/g) and contains abundant O/N functional groups, making it promising candidate as the electrode material. Introducing nitrogen can provide more pseudocapacitors and meanwhile improve the wettability of the NDHPC, thus enhancing electrochemical performance. The optimal NDHPC exhibits a high specific capacitance of 336 F g−1 at the current density of 0.5 A g−1 with good rate performance. Additionally, the assembled NDHPC symmetrical supercapacitor presents outstanding cycle stability with 96.2 % capacitance retention and possesses energy density of 7.85 Wh kg−1 at power density of 250 W kg−1. This study offers an effective and low-cost approach to fully utilize the organic matter in coal-derived residue for preparing supercapacitor electrode materials.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.