Shiyuan Zhu , Peng Liu , Qiongyu Zhou , Qianjun Deng , Yuanyuan Li , Jiacheng Wang , Zuo He , Changchun Tian , Xiaofen Wang
{"title":"Zn-Mn composite coating codeposited with two-dimensional carbon nanoplatelets for improving corrosion resistance","authors":"Shiyuan Zhu , Peng Liu , Qiongyu Zhou , Qianjun Deng , Yuanyuan Li , Jiacheng Wang , Zuo He , Changchun Tian , Xiaofen Wang","doi":"10.1016/j.diamond.2024.111772","DOIUrl":null,"url":null,"abstract":"<div><div>Zn coating is a typical anti-corrosion coating for carbon steel. Considering the sacrificial nature of Zn coating, it is essential to enhance the corrosion resistance for the long-term performance in the practical application. In this work, two-dimensional carbon nanoplatelets (2D-CNs) with nanometer thickness (∼100 nm) and ultra-large lateral size (10–40 μm) and Mn element have been successfully co-deposited with Zn onto low carbon steel by a simple electrodeposition method. Results show that the Zn-Mn/2D-CNs composite coating is composed of Zn phase, ZnMn<sub>3</sub> phase and a small number of 2D-CNs. The Zn-Mn/2D-CNs composite coating exhibits a modified surface quality with ultrafine grains and smaller roughness (Ra = 176 nm, Rq = 131 nm) when compared with that of Zn coatings (Ra = 798 nm, Rq = 684 nm). Besides, the inert 2D-CNs within the composite coating can act as the corrosion barriers. Therefore, the Zn-Mn/2D-CNs composite coating has excellent anti-corrosion performance, owning the lowest corrosion current densities <em>i</em><sub>corr</sub> (9.2 μA cm<sup>−2</sup>) and maximum coating resistance <em>R</em><sub>coat</sub> (1.2 kΩ·cm<sup>−2</sup>) and charge transfer resistance <em>R</em><sub>ct</sub> (3.5 kΩ·cm<sup>−2</sup>), associated with its modified microstructure, Mn element with passivation property, and 2D-CNs barriers. These results demonstrate the desirable potentiality of inert 2D carbon materials in the electrodeposition of Zn-based coating for improving the corrosion resistance.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111772"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009853","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Zn coating is a typical anti-corrosion coating for carbon steel. Considering the sacrificial nature of Zn coating, it is essential to enhance the corrosion resistance for the long-term performance in the practical application. In this work, two-dimensional carbon nanoplatelets (2D-CNs) with nanometer thickness (∼100 nm) and ultra-large lateral size (10–40 μm) and Mn element have been successfully co-deposited with Zn onto low carbon steel by a simple electrodeposition method. Results show that the Zn-Mn/2D-CNs composite coating is composed of Zn phase, ZnMn3 phase and a small number of 2D-CNs. The Zn-Mn/2D-CNs composite coating exhibits a modified surface quality with ultrafine grains and smaller roughness (Ra = 176 nm, Rq = 131 nm) when compared with that of Zn coatings (Ra = 798 nm, Rq = 684 nm). Besides, the inert 2D-CNs within the composite coating can act as the corrosion barriers. Therefore, the Zn-Mn/2D-CNs composite coating has excellent anti-corrosion performance, owning the lowest corrosion current densities icorr (9.2 μA cm−2) and maximum coating resistance Rcoat (1.2 kΩ·cm−2) and charge transfer resistance Rct (3.5 kΩ·cm−2), associated with its modified microstructure, Mn element with passivation property, and 2D-CNs barriers. These results demonstrate the desirable potentiality of inert 2D carbon materials in the electrodeposition of Zn-based coating for improving the corrosion resistance.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.