{"title":"Naringin promotes osteogenic potential in bone marrow-derived mesenchymal stem cells via mediation of miR-26a/Ski axis","authors":"Jiawei Zou, Longze Zhou, Guoqiang Liu, Ying Zhang, Lingguo Zeng","doi":"10.1016/j.bonr.2024.101815","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Osteonecrosis of the femoral head (ONFH) is a common orthopedic disease, which seriously affects the quality of life of patients. Naringin has protective effect on ONFH. In present study, we aimed to investigate the mechanism of Naringin regulating miR-26a in ONFH.</div></div><div><h3>Methods</h3><div>Two sequencing datasets (GSE89587 for micro-RNA, GSE123568 for mRNA) related to ONFH were obtained from the GEO database for bioinformatics analysis. Bone marrow-derived mesenchymal stem cells (BMSCs) were treated with adipogenic medium (AM) or osteogenic medium (OM), and then treated with 10 μM, 100 μM or 1000 μM Naringin. Gene and protein levels were detected by RT-qPCR and Western blotting. ALP activity and alizarin red staining (ARS) were applied to investigate the osteogenic differentiation of BMSCs. Oil red O staining was performed to test adipogenic differentiation. The content of triglycerides (TG) in BMSCs was detected by TG detection kit. Double luciferase reporter gene measured the interaction between miR-26a and Ski.</div></div><div><h3>Results</h3><div>Bioinfomatic analyses indicated a significant downregulation of miR-26a and a significant upregulation of Ski in the peripheral blood of patients with ONFH. Naringin significantly promoted the osteogenic differentiation, and increased the ALP activity and ARS. Meanwhile, it decreased the adipogenic differentiation and inhibited TG levels. In addition, miR-26a was downregulated and Ski was increased in AM-treated BMSCs, while miR-26a was upregulated and Ski was decreased in OM-treated BMSCs. Furthermore, miR-26a promoted the osteogenic differentiation and suppressed the adipogenic differentiation in BMSCs. Moreover, Naringin enhanced osteogenic potential in BMSCs was reversed by knockdown of miR-26a or overexpression of Ski.</div></div><div><h3>Conclusion</h3><div>Naringin could promote osteogenic differentiation of BMSCs via mediation of miR-26a/Ski axis. Thereby, Naringin might be a new agent for ONFH treatment.</div></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":"23 ","pages":"Article 101815"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187224000822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Osteonecrosis of the femoral head (ONFH) is a common orthopedic disease, which seriously affects the quality of life of patients. Naringin has protective effect on ONFH. In present study, we aimed to investigate the mechanism of Naringin regulating miR-26a in ONFH.
Methods
Two sequencing datasets (GSE89587 for micro-RNA, GSE123568 for mRNA) related to ONFH were obtained from the GEO database for bioinformatics analysis. Bone marrow-derived mesenchymal stem cells (BMSCs) were treated with adipogenic medium (AM) or osteogenic medium (OM), and then treated with 10 μM, 100 μM or 1000 μM Naringin. Gene and protein levels were detected by RT-qPCR and Western blotting. ALP activity and alizarin red staining (ARS) were applied to investigate the osteogenic differentiation of BMSCs. Oil red O staining was performed to test adipogenic differentiation. The content of triglycerides (TG) in BMSCs was detected by TG detection kit. Double luciferase reporter gene measured the interaction between miR-26a and Ski.
Results
Bioinfomatic analyses indicated a significant downregulation of miR-26a and a significant upregulation of Ski in the peripheral blood of patients with ONFH. Naringin significantly promoted the osteogenic differentiation, and increased the ALP activity and ARS. Meanwhile, it decreased the adipogenic differentiation and inhibited TG levels. In addition, miR-26a was downregulated and Ski was increased in AM-treated BMSCs, while miR-26a was upregulated and Ski was decreased in OM-treated BMSCs. Furthermore, miR-26a promoted the osteogenic differentiation and suppressed the adipogenic differentiation in BMSCs. Moreover, Naringin enhanced osteogenic potential in BMSCs was reversed by knockdown of miR-26a or overexpression of Ski.
Conclusion
Naringin could promote osteogenic differentiation of BMSCs via mediation of miR-26a/Ski axis. Thereby, Naringin might be a new agent for ONFH treatment.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.