Xinpei Li , Shanshan Guo , Guoqin Liu , Yongtao Wang , Mingxin Zhang , Yuan Liu , Yijie Gu
{"title":"High sodium conductive polymer electrolyte-based nanoclusters in supercapacitor","authors":"Xinpei Li , Shanshan Guo , Guoqin Liu , Yongtao Wang , Mingxin Zhang , Yuan Liu , Yijie Gu","doi":"10.1016/j.jelechem.2024.118765","DOIUrl":null,"url":null,"abstract":"<div><div>The sodium-ion polymer electrolytes (PEs) spur the development of the high safe solid batteries due to their merits of safety, flexibility, lower interfacial resistance with electrodes, and easy processing. Herein, a rational strategy is developed to construct the PE, which can integrate the excellent sodium ion conductivity with the mechanical performances. This strategy applies the nano-sized metal oxide clusters (MOCs) not only to supply the sodium ions but also to inhibit the polymer crystallization. The released polymer chains, crosslinked via physical crosslinking points (nanoclusters), form a network that provides the electrolyte film with toughness over a wide temperature range. The targeted electrolyte exhibits excellent Na-ion conductivity of 3.8 × 10<sup>−4</sup> S cm<sup>−1</sup> at room temperature, tensile strength up to 0.74 Mpa and breaking elongation of 23 %. In addition, this PE widens the electrochemical stability window of the aqueous Na-ion supercapacitor up to 2.0 V since the water molecules are effectively confined via the strong interactions among components. Our research on sodium polymer electrolytes combined by nanoclusters and PVA holds significant promise for advancing solid-state sodium supercapacitors— a new generation of high-performance, safe, and cost-effective energy storage solutions.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"976 ","pages":"Article 118765"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007434","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The sodium-ion polymer electrolytes (PEs) spur the development of the high safe solid batteries due to their merits of safety, flexibility, lower interfacial resistance with electrodes, and easy processing. Herein, a rational strategy is developed to construct the PE, which can integrate the excellent sodium ion conductivity with the mechanical performances. This strategy applies the nano-sized metal oxide clusters (MOCs) not only to supply the sodium ions but also to inhibit the polymer crystallization. The released polymer chains, crosslinked via physical crosslinking points (nanoclusters), form a network that provides the electrolyte film with toughness over a wide temperature range. The targeted electrolyte exhibits excellent Na-ion conductivity of 3.8 × 10−4 S cm−1 at room temperature, tensile strength up to 0.74 Mpa and breaking elongation of 23 %. In addition, this PE widens the electrochemical stability window of the aqueous Na-ion supercapacitor up to 2.0 V since the water molecules are effectively confined via the strong interactions among components. Our research on sodium polymer electrolytes combined by nanoclusters and PVA holds significant promise for advancing solid-state sodium supercapacitors— a new generation of high-performance, safe, and cost-effective energy storage solutions.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.