Hongxiang Lan , Lizhan Bai , Jingwei Fu , Shijin Nie , Huanfa Wang , Guiping Lin
{"title":"Experimental study on the thermal performance of a novel vapor chamber manufactured by 3D-printing technology","authors":"Hongxiang Lan , Lizhan Bai , Jingwei Fu , Shijin Nie , Huanfa Wang , Guiping Lin","doi":"10.1016/j.tsep.2024.102989","DOIUrl":null,"url":null,"abstract":"<div><div>Vapor chamber holds great application potential in the field of heat dissipation for high-power electronic devices. This study developed a novel vapor chamber using 3D-printing technology to enhance heat dissipation for compact electronic devices. The vapor chamber was constructed from aluminum alloy with a structural dimension of <span><math><mrow><mn>60</mn><mo>×</mo><mn>60</mn><mo>×</mo><mn>30</mn><msup><mrow><mi>m</mi><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span>. In this work, the extended condensation structure of the vapor chamber was combined with an external cooling structure, resulting in a 729 % increase in the external heat dissipation area compared to the evaporation area in a limited space. Extensive experiments were conducted using deionized water as the working fluid under various cooling conditions and heat loads. The results showed that the vapor chamber was capable of maintaining a low thermal resistance at high power and high heat flux conditions, with a minimum thermal resistance of 0.087 °C/W when the heat load was 1000 W. At a cooling water flow rate of 0.1 L/s, the vapor chamber demonstrated the capacity to withstand a critical heat load of up to 1600 W, with the heat flux of 326 W/cm<sup>2</sup>. Compared to conventional vapor chambers, this novel vapor chamber is better able to achieve stable and efficient heat dissipation under high power and high heat flux conditions, especially in a limited space.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"55 ","pages":"Article 102989"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006073","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Vapor chamber holds great application potential in the field of heat dissipation for high-power electronic devices. This study developed a novel vapor chamber using 3D-printing technology to enhance heat dissipation for compact electronic devices. The vapor chamber was constructed from aluminum alloy with a structural dimension of . In this work, the extended condensation structure of the vapor chamber was combined with an external cooling structure, resulting in a 729 % increase in the external heat dissipation area compared to the evaporation area in a limited space. Extensive experiments were conducted using deionized water as the working fluid under various cooling conditions and heat loads. The results showed that the vapor chamber was capable of maintaining a low thermal resistance at high power and high heat flux conditions, with a minimum thermal resistance of 0.087 °C/W when the heat load was 1000 W. At a cooling water flow rate of 0.1 L/s, the vapor chamber demonstrated the capacity to withstand a critical heat load of up to 1600 W, with the heat flux of 326 W/cm2. Compared to conventional vapor chambers, this novel vapor chamber is better able to achieve stable and efficient heat dissipation under high power and high heat flux conditions, especially in a limited space.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.