Nahid Hasan , Md. Golam Rabiul Alam , Shamim H. Ripon , Phuoc Hung Pham , Mohammad Mehedi Hassan
{"title":"An autoencoder-based confederated clustering leveraging a robust model fusion strategy for federated unsupervised learning","authors":"Nahid Hasan , Md. Golam Rabiul Alam , Shamim H. Ripon , Phuoc Hung Pham , Mohammad Mehedi Hassan","doi":"10.1016/j.inffus.2024.102751","DOIUrl":null,"url":null,"abstract":"<div><div>Concerns related to data privacy, security, and ethical considerations become more prominent as data volumes continue to grow. In contrast to centralized setups, where all data is accessible at a single location, model-based clustering approaches can be successfully employed in federated settings. However, this approach to clustering in federated settings is still relatively unexplored and requires further attention. As federated clustering deals with remote data and requires privacy and security to be maintained, it poses particular challenges as well as possibilities. While model-based clustering offers promise in federated environments, a robust model aggregation method is essential for clustering rather than the generic model aggregation method like Federated Averaging (FedAvg). In this research, we proposed an autoencoder-based clustering method by introducing a novel model aggregation method FednadamN, which is a fusion of Adam and Nadam optimization approaches in a federated learning setting. Therefore, the proposed FednadamN adopted the adaptive learning rates based on the first and second moments of gradients from Adam which offered fast convergence and robustness to noisy data. Furthermore, FednadamN also incorporated the Nesterov-accelerated gradients from Nadam to further enhance the convergence speed and stability. We have studied the performance of the proposed Autoencoder-based clustering methods on benchmark datasets and using the novel FednadamN model aggregation strategy. It shows remarkable performance gain in federated clustering in comparison to the state-of-the-art.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102751"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005293","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Concerns related to data privacy, security, and ethical considerations become more prominent as data volumes continue to grow. In contrast to centralized setups, where all data is accessible at a single location, model-based clustering approaches can be successfully employed in federated settings. However, this approach to clustering in federated settings is still relatively unexplored and requires further attention. As federated clustering deals with remote data and requires privacy and security to be maintained, it poses particular challenges as well as possibilities. While model-based clustering offers promise in federated environments, a robust model aggregation method is essential for clustering rather than the generic model aggregation method like Federated Averaging (FedAvg). In this research, we proposed an autoencoder-based clustering method by introducing a novel model aggregation method FednadamN, which is a fusion of Adam and Nadam optimization approaches in a federated learning setting. Therefore, the proposed FednadamN adopted the adaptive learning rates based on the first and second moments of gradients from Adam which offered fast convergence and robustness to noisy data. Furthermore, FednadamN also incorporated the Nesterov-accelerated gradients from Nadam to further enhance the convergence speed and stability. We have studied the performance of the proposed Autoencoder-based clustering methods on benchmark datasets and using the novel FednadamN model aggregation strategy. It shows remarkable performance gain in federated clustering in comparison to the state-of-the-art.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.