Yu Xu , Zijun Li , Junjian Wang , Yibin Lu , Zi Cheng , Jingkai Wang , Zhang Lin
{"title":"Improving thermal environment and ventilation efficiency in high-temperature excavation tunnels via an innovative heat insulation and cooling baffle","authors":"Yu Xu , Zijun Li , Junjian Wang , Yibin Lu , Zi Cheng , Jingkai Wang , Zhang Lin","doi":"10.1016/j.tsep.2024.102992","DOIUrl":null,"url":null,"abstract":"<div><div>An increasing number of tunnels inevitably encounter high-temperature environments induced by elevated geotemperatures. The energy demand for ventilation and cooling in excavation tunnels increases significantly as the temperature of the surrounding rock increases, thereby hindering the sustainable exploitation of deep resources. This paper presents an optimization method for airflow organization in excavation tunnels that integrates thermal insulation and cooling (TIC) baffles. The proposed approach significantly improves the cooling effect of the auxiliary ventilation system while reducing energy consumption. This method offers the advantages of simplicity, convenience, and cost-effectiveness. A multifield coupling model using COMSOL software was developed and validated to analyze the system, and the application scenario was explored. Several ventilation scenarios were examined, highlighting that TIC baffles effectively reduce the heat release from the surrounding rock and lower the airflow temperature in personnel areas in the excavation tunnel. By implementing TIC baffles, the average airflow temperature in the excavation tunnel decreases by 1.5 °C to 1.8 °C, resulting in a saving of approximately 5.11 kW in cooling energy. Increasing the circulating water flow in the heat-exchange pipe of the TIC baffles or reducing the initial circulating water temperature can enhance the cooling capacity of the TIC baffles and lower the tunnel airflow temperature to a certain extent. The distance between the TIC baffles and surrounding rock significantly affects the airflow temperature between the left and right TIC baffles. An excessive length of TIC baffles (L > 7 m) leads to heat accumulation and high-temperature airflow in localized areas. In This study, a method for optimizing the thermal environment and saving energy in high-temperature excavation tunnels is proposed.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"55 ","pages":"Article 102992"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006103","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
An increasing number of tunnels inevitably encounter high-temperature environments induced by elevated geotemperatures. The energy demand for ventilation and cooling in excavation tunnels increases significantly as the temperature of the surrounding rock increases, thereby hindering the sustainable exploitation of deep resources. This paper presents an optimization method for airflow organization in excavation tunnels that integrates thermal insulation and cooling (TIC) baffles. The proposed approach significantly improves the cooling effect of the auxiliary ventilation system while reducing energy consumption. This method offers the advantages of simplicity, convenience, and cost-effectiveness. A multifield coupling model using COMSOL software was developed and validated to analyze the system, and the application scenario was explored. Several ventilation scenarios were examined, highlighting that TIC baffles effectively reduce the heat release from the surrounding rock and lower the airflow temperature in personnel areas in the excavation tunnel. By implementing TIC baffles, the average airflow temperature in the excavation tunnel decreases by 1.5 °C to 1.8 °C, resulting in a saving of approximately 5.11 kW in cooling energy. Increasing the circulating water flow in the heat-exchange pipe of the TIC baffles or reducing the initial circulating water temperature can enhance the cooling capacity of the TIC baffles and lower the tunnel airflow temperature to a certain extent. The distance between the TIC baffles and surrounding rock significantly affects the airflow temperature between the left and right TIC baffles. An excessive length of TIC baffles (L > 7 m) leads to heat accumulation and high-temperature airflow in localized areas. In This study, a method for optimizing the thermal environment and saving energy in high-temperature excavation tunnels is proposed.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.