{"title":"A high-water retention, self-healing hydrogel thyroid model for surgical training","authors":"Liang Ma , Zhihao Zhu , Shijie Yu , Sidney Moses Amadi , Fei Zhao , Jing Zhang , Zhifei Wang","doi":"10.1016/j.mtbio.2024.101334","DOIUrl":null,"url":null,"abstract":"<div><div>The evaluation of thyroid lesions through Fine-Needle Aspiration Biopsy (FNAB) is a common procedure that requires advanced hand manipulation skills. Conventional training models for this procedure lack essential features such as tactile sensation and the ability to repeat punctures similar to those of real organs. To improve the quality of training, we have developed a hydrogel thyroid model that possesses features such as high-water retention and self-healing properties. This model consists of polyvinyl alcohol (PVA), polyacrylic acid (PAA), and trehalose that enhance water retention. By utilizing indirect printing technology, this hydrogel-based thyroid model closely resembles those of porcine thyroid tissue in terms of compression modulus and friction coefficient, exhibiting exceptional conformability, flexibility, and a water retention rate of 94.7 % at 6 h. It also displays a thrust force range of 0–0.98 N during simulated puncture, closely approximating real FNAB operations. This model shows evidence that it effectively simulates thyroid tissue and can be utilized for repetitive FNAB training to enhance the proficiency of medical personnel. Our study focuses on introducing new possibilities for developing advanced materials training models to be utilized in the medical field.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101334"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003958","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The evaluation of thyroid lesions through Fine-Needle Aspiration Biopsy (FNAB) is a common procedure that requires advanced hand manipulation skills. Conventional training models for this procedure lack essential features such as tactile sensation and the ability to repeat punctures similar to those of real organs. To improve the quality of training, we have developed a hydrogel thyroid model that possesses features such as high-water retention and self-healing properties. This model consists of polyvinyl alcohol (PVA), polyacrylic acid (PAA), and trehalose that enhance water retention. By utilizing indirect printing technology, this hydrogel-based thyroid model closely resembles those of porcine thyroid tissue in terms of compression modulus and friction coefficient, exhibiting exceptional conformability, flexibility, and a water retention rate of 94.7 % at 6 h. It also displays a thrust force range of 0–0.98 N during simulated puncture, closely approximating real FNAB operations. This model shows evidence that it effectively simulates thyroid tissue and can be utilized for repetitive FNAB training to enhance the proficiency of medical personnel. Our study focuses on introducing new possibilities for developing advanced materials training models to be utilized in the medical field.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).