Leukocyte segmentation based on DenseREU-Net

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jie Meng , Yingqi Lu , Wangjiao He , Xiangsuo Fan , Gechen Zhou , Hongjian Wei
{"title":"Leukocyte segmentation based on DenseREU-Net","authors":"Jie Meng ,&nbsp;Yingqi Lu ,&nbsp;Wangjiao He ,&nbsp;Xiangsuo Fan ,&nbsp;Gechen Zhou ,&nbsp;Hongjian Wei","doi":"10.1016/j.jksuci.2024.102236","DOIUrl":null,"url":null,"abstract":"<div><div>The detection of white blood cells provides important information in cellular research regarding infections, inflammation, immune function, and blood pathologies. Effective segmentation of WBCs in blood microscopic images not only aids pathologists in making more accurate diagnoses and early detections but is also crucial for identifying the types of lesions. Due to significant differences among various types of pathological WBCs and the complexities associated with cellular imaging and staining techniques, accurately recognizing and segmenting these different types of WBCs remains challenging. To address these challenges, this paper proposes a WBC segmentation technique based on DenseREU-Net, which enhances feature exchange and reuse by employing Dense Blocks and residual units. Additionally, it introduces mixed pooling and skip multi-scale fusion modules to improve the recognition and segmentation accuracy of different types of pathological WBCs. This study was validated on two datasets provided by DML-LZWH (Liuzhou Workers’ Hospital Medical Laboratory). Experimental results indicate that on the multi-class dataset, DenseREU-Net achieves an average IoU of 73.05% and a Dice coefficient of 80.25%. For the binary classification blind sample dataset, the average IoU and Dice coefficient are 83.98% and 90.41%, respectively. In both datasets, the proposed model significantly outperforms other advanced medical image segmentation algorithms. Overall, DenseREU-Net effectively analyzes blood microscopic images and accurately recognizes and segments different types of WBCs, providing robust support for the diagnosis of blood-related diseases.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102236"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003252","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of white blood cells provides important information in cellular research regarding infections, inflammation, immune function, and blood pathologies. Effective segmentation of WBCs in blood microscopic images not only aids pathologists in making more accurate diagnoses and early detections but is also crucial for identifying the types of lesions. Due to significant differences among various types of pathological WBCs and the complexities associated with cellular imaging and staining techniques, accurately recognizing and segmenting these different types of WBCs remains challenging. To address these challenges, this paper proposes a WBC segmentation technique based on DenseREU-Net, which enhances feature exchange and reuse by employing Dense Blocks and residual units. Additionally, it introduces mixed pooling and skip multi-scale fusion modules to improve the recognition and segmentation accuracy of different types of pathological WBCs. This study was validated on two datasets provided by DML-LZWH (Liuzhou Workers’ Hospital Medical Laboratory). Experimental results indicate that on the multi-class dataset, DenseREU-Net achieves an average IoU of 73.05% and a Dice coefficient of 80.25%. For the binary classification blind sample dataset, the average IoU and Dice coefficient are 83.98% and 90.41%, respectively. In both datasets, the proposed model significantly outperforms other advanced medical image segmentation algorithms. Overall, DenseREU-Net effectively analyzes blood microscopic images and accurately recognizes and segments different types of WBCs, providing robust support for the diagnosis of blood-related diseases.
基于 DenseREU-Net 的白细胞分割技术
白细胞的检测为有关感染、炎症、免疫功能和血液病理的细胞研究提供了重要信息。有效分割血液显微图像中的白细胞不仅有助于病理学家做出更准确的诊断和早期检测,而且对确定病变类型也至关重要。由于各种类型的病理白细胞之间存在显著差异,而且细胞成像和染色技术非常复杂,因此准确识别和分割这些不同类型的白细胞仍然具有挑战性。为了应对这些挑战,本文提出了一种基于 DenseREU-Net 的白细胞分割技术,该技术通过使用密集块和残留单元来增强特征交换和重用。此外,它还引入了混合池和跳过多尺度融合模块,以提高不同类型病理白细胞的识别和分割精度。这项研究在 DML-LZWH(柳州市工人医院医学实验室)提供的两个数据集上进行了验证。实验结果表明,在多类数据集上,DenseREU-Net 的平均 IoU 为 73.05%,Dice 系数为 80.25%。在二元分类盲样本数据集上,平均 IoU 和 Dice 系数分别为 83.98% 和 90.41%。在这两个数据集中,所提出的模型明显优于其他先进的医学图像分割算法。总之,DenseREU-Net 能有效分析血液显微图像,准确识别和分割不同类型的白细胞,为血液相关疾病的诊断提供有力支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信