{"title":"Gaussian process regression as a powerful tool for analysing time series in environmental geochemistry","authors":"Teba Gil-Díaz , Michael Trumm","doi":"10.1016/j.ecoinf.2024.102877","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring programs require more advanced data management for the registered time series. Classical temporal series decomposition cannot fulfil current needs regarding adequate data representation, optimization of the spatial-temporal sampling resolution and predictive power. In the manuscript at hand, we will demonstrate that Gaussian process regression (GPR) models are a vital machine-learning tool to interpret temporal series, improving understanding of geochemical cycles, providing input data for geochemical models and acting as a guide for future decisions in environmental monitoring. Firstly, we explore the impacts of sampling frequency in the GPR performance for temporal series with variable lengths and sampled frequencies of water discharges. On a second approach, we present the strengths and weaknesses between classical decomposition of temporal series and GPR results for a case study: a 14-year record of water discharge, suspended particulate matter and antimony concentrations in the Garonne River. Our results suggest that (i) even short temporal series with low sampling resolution can be accurately characterized by GPR when presenting well defined seasonal patterns, and (ii) GPR provides more detailed and robust support than classical statistics to identify processes responsible for multi-scale geochemical signals. This work provides a reference for researchers, engineers, and stakeholders for more reliable monitoring, understanding, and managing aquatic ecosystems.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102877"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004199","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring programs require more advanced data management for the registered time series. Classical temporal series decomposition cannot fulfil current needs regarding adequate data representation, optimization of the spatial-temporal sampling resolution and predictive power. In the manuscript at hand, we will demonstrate that Gaussian process regression (GPR) models are a vital machine-learning tool to interpret temporal series, improving understanding of geochemical cycles, providing input data for geochemical models and acting as a guide for future decisions in environmental monitoring. Firstly, we explore the impacts of sampling frequency in the GPR performance for temporal series with variable lengths and sampled frequencies of water discharges. On a second approach, we present the strengths and weaknesses between classical decomposition of temporal series and GPR results for a case study: a 14-year record of water discharge, suspended particulate matter and antimony concentrations in the Garonne River. Our results suggest that (i) even short temporal series with low sampling resolution can be accurately characterized by GPR when presenting well defined seasonal patterns, and (ii) GPR provides more detailed and robust support than classical statistics to identify processes responsible for multi-scale geochemical signals. This work provides a reference for researchers, engineers, and stakeholders for more reliable monitoring, understanding, and managing aquatic ecosystems.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.