Analysis of vegetation dynamics from 2001 to 2020 in China's Ganzhou rare earth mining area using time series remote sensing and SHAP-enhanced machine learning
Lei Ming , Yuandong Wang , Guangxu Liu , Lihong Meng , Xiaojie Chen
{"title":"Analysis of vegetation dynamics from 2001 to 2020 in China's Ganzhou rare earth mining area using time series remote sensing and SHAP-enhanced machine learning","authors":"Lei Ming , Yuandong Wang , Guangxu Liu , Lihong Meng , Xiaojie Chen","doi":"10.1016/j.ecoinf.2024.102887","DOIUrl":null,"url":null,"abstract":"<div><div>Rare earth mining, essential for modern industries and economic growth, often leads to severe environmental degradation. Previous research has explored the ecological impacts of rare earth mining but has not fully investigated the intricate interplay and subdivisions of environmental and anthropogenic factors driving vegetation changes over extended periods. This study addresses this gap by employing time series remote sensing and SHAP-enhanced machine learning to analyze vegetation dynamics in China's Ganzhou rare earth mining area from 2001 to 2020. Using the kNDVI derived from Landsat data, we identified three distinct vegetation trajectory types: pro-environment, des-environment, and res-environment. An ensemble machine learning model combined with SHAP analysis revealed the cropland area proportion, PM10 levels, and shrubland area proportion as the most influential factors affecting vegetation across all mining types. Additionally, after 2012, the palmer drought severity index and downward surface shortwave radiation emerged as positive contributors to vegetation health, while population pressure had a more substantial negative influence in des-environment areas. Our findings highlight spatial heterogeneity in vegetation recovery patterns and highlight the complex interactions among land cover changes, air quality, climate factors, and human activities in shaping vegetation dynamics. This study provides valuable insights for developing targeted, context-specific restoration strategies in rare earth mining areas, contributing to more sustainable mining practices and global environmental management.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102887"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004291","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rare earth mining, essential for modern industries and economic growth, often leads to severe environmental degradation. Previous research has explored the ecological impacts of rare earth mining but has not fully investigated the intricate interplay and subdivisions of environmental and anthropogenic factors driving vegetation changes over extended periods. This study addresses this gap by employing time series remote sensing and SHAP-enhanced machine learning to analyze vegetation dynamics in China's Ganzhou rare earth mining area from 2001 to 2020. Using the kNDVI derived from Landsat data, we identified three distinct vegetation trajectory types: pro-environment, des-environment, and res-environment. An ensemble machine learning model combined with SHAP analysis revealed the cropland area proportion, PM10 levels, and shrubland area proportion as the most influential factors affecting vegetation across all mining types. Additionally, after 2012, the palmer drought severity index and downward surface shortwave radiation emerged as positive contributors to vegetation health, while population pressure had a more substantial negative influence in des-environment areas. Our findings highlight spatial heterogeneity in vegetation recovery patterns and highlight the complex interactions among land cover changes, air quality, climate factors, and human activities in shaping vegetation dynamics. This study provides valuable insights for developing targeted, context-specific restoration strategies in rare earth mining areas, contributing to more sustainable mining practices and global environmental management.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.