Cristina Cerdá-Moreno , Silvia Villaró-Cos , Javier Tripiana , Santiago Triviño de las Heras , Joan Tarragona , Tomás Lafarga
{"title":"Effect of temperature on the oxygen production capacity and growth of scenedesmus almeriensis","authors":"Cristina Cerdá-Moreno , Silvia Villaró-Cos , Javier Tripiana , Santiago Triviño de las Heras , Joan Tarragona , Tomás Lafarga","doi":"10.1016/j.algal.2024.103795","DOIUrl":null,"url":null,"abstract":"<div><div>The optimal temperature and irradiance to maximise oxygen production were 39.3 °C and 512.5 μmol photons·m<sup>−2</sup>·s<sup>−1</sup>, respectively. These values were obtained by photorespirometry, which is a quick method to measure the photosynthetic and respiration rates of microalgae at a laboratory scale. With these conditions, the global oxygen production rate of <em>S. almeriensis</em> was 246.23 mg<sub>oxygen</sub>·g<sub>biomass</sub><sup>−1</sup>·h<sup>−1</sup>. When the culture temperature was controlled at 39.3 °C for 1 h per day, the daily oxygen production capacity of <em>S. almeriensis</em> increased from 3129.5 mg<sub>oxygen</sub>·g<sub>biomass</sub><sup>−1</sup> to 3778.5 mg<sub>oxygen</sub>·g<sub>biomass</sub><sup>−1</sup>. However, keeping the temperature at 39.3 °C for a longer time period caused a damage to the photosynthetic apparatus. This was validated using laboratory-scale bubble columns. The damage was reversible when heating the cells for <2 h, but keeping the temperature of the culture at 39.3 °C for 3 h led to an irreversible damage and a 6 % decrease in the photosynthetic performance. Controlling the overheating of microalgal cultures is crucial to maximise growth. In addition, the duration of the exposure to high temperatures should also be included into growth and taken in consideration.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103795"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424004077","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The optimal temperature and irradiance to maximise oxygen production were 39.3 °C and 512.5 μmol photons·m−2·s−1, respectively. These values were obtained by photorespirometry, which is a quick method to measure the photosynthetic and respiration rates of microalgae at a laboratory scale. With these conditions, the global oxygen production rate of S. almeriensis was 246.23 mgoxygen·gbiomass−1·h−1. When the culture temperature was controlled at 39.3 °C for 1 h per day, the daily oxygen production capacity of S. almeriensis increased from 3129.5 mgoxygen·gbiomass−1 to 3778.5 mgoxygen·gbiomass−1. However, keeping the temperature at 39.3 °C for a longer time period caused a damage to the photosynthetic apparatus. This was validated using laboratory-scale bubble columns. The damage was reversible when heating the cells for <2 h, but keeping the temperature of the culture at 39.3 °C for 3 h led to an irreversible damage and a 6 % decrease in the photosynthetic performance. Controlling the overheating of microalgal cultures is crucial to maximise growth. In addition, the duration of the exposure to high temperatures should also be included into growth and taken in consideration.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment