Aron Ferenczi, Matthew Fellbaum, Yen Peng Chew, Catherine Kidner, Attila Molnar
{"title":"Comparison of CRISPR/Cas9 and Cas12a for gene editing in Chlamydomonas reinhardtii","authors":"Aron Ferenczi, Matthew Fellbaum, Yen Peng Chew, Catherine Kidner, Attila Molnar","doi":"10.1016/j.algal.2024.103796","DOIUrl":null,"url":null,"abstract":"<div><div>CRISPR/Cas-based technologies have revolutionized biology, offering a wide range of gene editing and engineering applications due to their diverse enzyme characteristics. Among the CRISPR/Cas nucleases, Cas9, and more recently, Cas12a (formerly known as Cpf1), have been employed in various gene editing applications in many eukaryotes, including the model green alga <em>Chlamydomonas reinhardtii</em>. To provide a comprehensive picture of their applicability in single-strand templated DNA repair and gene editing, we first mapped their targeting space by analysing their corresponding PAM frequencies, and then compared Cas9 and Cas12a activities by targeting overlapping regions at three independent loci in the <em>Chlamydomonas</em> genome. We identified 8 and 32 times more target sites for Cas9 compared to Cas12a within promoter regions and coding sequences, respectively. We found that Cas9 and Cas12a RNPs- co-delivered with ssODN repair templates- induced similar levels of total editing, achieving as much as 20–30 % in all viably recovered cells. Importantly, the level of precision editing was slightly higher for Cas12a. In contrast, Cas9 alone was able to induce more edits at the FKB12 locus than its Cas12a counterpart, overall making Cas9 the preferable enzyme for genome engineering among the currently available nucleases in <em>C. reinhardtii</em>.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103796"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424004089","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR/Cas-based technologies have revolutionized biology, offering a wide range of gene editing and engineering applications due to their diverse enzyme characteristics. Among the CRISPR/Cas nucleases, Cas9, and more recently, Cas12a (formerly known as Cpf1), have been employed in various gene editing applications in many eukaryotes, including the model green alga Chlamydomonas reinhardtii. To provide a comprehensive picture of their applicability in single-strand templated DNA repair and gene editing, we first mapped their targeting space by analysing their corresponding PAM frequencies, and then compared Cas9 and Cas12a activities by targeting overlapping regions at three independent loci in the Chlamydomonas genome. We identified 8 and 32 times more target sites for Cas9 compared to Cas12a within promoter regions and coding sequences, respectively. We found that Cas9 and Cas12a RNPs- co-delivered with ssODN repair templates- induced similar levels of total editing, achieving as much as 20–30 % in all viably recovered cells. Importantly, the level of precision editing was slightly higher for Cas12a. In contrast, Cas9 alone was able to induce more edits at the FKB12 locus than its Cas12a counterpart, overall making Cas9 the preferable enzyme for genome engineering among the currently available nucleases in C. reinhardtii.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment