Jing Wen , Patricia de Rango , Nathalie Allain , Marc Novelli , Thierry Grosdidier , Laetitia Laversenne
{"title":"In situ observation and kinetic modeling of the fundamental mechanisms underlying hydrogen sorption in forged Mg–Mg2Ni composites","authors":"Jing Wen , Patricia de Rango , Nathalie Allain , Marc Novelli , Thierry Grosdidier , Laetitia Laversenne","doi":"10.1016/j.ijhydene.2024.11.118","DOIUrl":null,"url":null,"abstract":"<div><div>While Mg–Mg<sub>2</sub>Ni composites are promising for hydrogen storage, their implementation is hindered by our incomplete understanding of absorption/desorption kinetics. Here, we combine <em>in situ</em> neutron diffraction with kinetic and microstructural analyses to uncover the sorption mechanism of deuterated hydrogen D<sub>2</sub> in a Mg–Mg<sub>2</sub>Ni composite processed by fast forging. Phase transitions upon first absorption are found to be different from subsequent absorptions. The first absorption involves rapid formation of Mg<sub>2</sub>NiD<sub>0.3-<em>x</em></sub> followed by simultaneous formation of MgD<sub>2</sub> and Mg<sub>2</sub>NiD<sub>4</sub>. Kinetic modeling indicates that surface nucleation of the magnesium hydride is rate-limiting. Subsequent absorptions involve two phases, Mg and Mg<sub>2</sub>NiD<sub>0.3-<em>x</em></sub>, which promote absorption. Kinetic modeling and microstructure analysis indicate that (1) MgD<sub>2</sub> nucleation occurs at the Mg–Mg<sub>2</sub>NiD<sub>0.3-<em>x</em></sub> interface and (2) Mg<sub>2</sub>NiD<sub>4</sub> formation is kinetically controlled by deuterium diffusion through the growing Mg<sub>2</sub>NiD<sub>4</sub> plate. In all desorptions, deuterium release starts by rapid decomposition of Mg<sub>2</sub>NiD<sub>4</sub> into Mg<sub>2</sub>NiD<sub>0.3-<em>x</em></sub>, followed by slower MgD<sub>2</sub> decomposition.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1160-1173"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924047931","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While Mg–Mg2Ni composites are promising for hydrogen storage, their implementation is hindered by our incomplete understanding of absorption/desorption kinetics. Here, we combine in situ neutron diffraction with kinetic and microstructural analyses to uncover the sorption mechanism of deuterated hydrogen D2 in a Mg–Mg2Ni composite processed by fast forging. Phase transitions upon first absorption are found to be different from subsequent absorptions. The first absorption involves rapid formation of Mg2NiD0.3-x followed by simultaneous formation of MgD2 and Mg2NiD4. Kinetic modeling indicates that surface nucleation of the magnesium hydride is rate-limiting. Subsequent absorptions involve two phases, Mg and Mg2NiD0.3-x, which promote absorption. Kinetic modeling and microstructure analysis indicate that (1) MgD2 nucleation occurs at the Mg–Mg2NiD0.3-x interface and (2) Mg2NiD4 formation is kinetically controlled by deuterium diffusion through the growing Mg2NiD4 plate. In all desorptions, deuterium release starts by rapid decomposition of Mg2NiD4 into Mg2NiD0.3-x, followed by slower MgD2 decomposition.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.