Jueshuo Fan , Lisha Shen , Chenglin Zhao , Zhida Wang , Zhiming Tu , Jiaxuan Hu , Changfeng Yan
{"title":"Ion liquid treatment for high-performance NiSe/CNT water electrolysis catalyst","authors":"Jueshuo Fan , Lisha Shen , Chenglin Zhao , Zhida Wang , Zhiming Tu , Jiaxuan Hu , Changfeng Yan","doi":"10.1016/j.ijhydene.2024.11.142","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel selenide (NiSe) and carbon nanotubes (CNTs) heterojunction structure water electrolysis catalyst was prepared by vapor deposition method, constructing a heterogeneous phase interface between NiSe and CNTs. The interface effect between NiSe and CNTs enhanced further π-electron delocalization of CNTs, increasing the local electron density at the Ni sites. Subsequent ionic liquids (ILs) treatment further resolved the aggregation issues of NiSe nanoparticles and carbon nanotubes, and facilitated further π-electron delocalization at the heterojunction. The imidazolium cations acted as “connectors,” tightly linking the CNTs and NiSe nanoparticles. The NiSe/CNT-IL exhibited an HER overpotential of 82 mV at 10 mA cm⁻<sup>2</sup> in 1 M KOH. Additionally, as a full water electrolysis catalyst in a water electrolyzer, it achieved a single-cell voltage of 1.965 V at a maximum current density of 500 mA cm⁻<sup>2</sup> at 60 °C. This direct IL functionalization for CNTs facilitates the electron transfer process and ILs can serve as the electron acceptor with superior hydrogen adsorption.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 774-781"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048225","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel selenide (NiSe) and carbon nanotubes (CNTs) heterojunction structure water electrolysis catalyst was prepared by vapor deposition method, constructing a heterogeneous phase interface between NiSe and CNTs. The interface effect between NiSe and CNTs enhanced further π-electron delocalization of CNTs, increasing the local electron density at the Ni sites. Subsequent ionic liquids (ILs) treatment further resolved the aggregation issues of NiSe nanoparticles and carbon nanotubes, and facilitated further π-electron delocalization at the heterojunction. The imidazolium cations acted as “connectors,” tightly linking the CNTs and NiSe nanoparticles. The NiSe/CNT-IL exhibited an HER overpotential of 82 mV at 10 mA cm⁻2 in 1 M KOH. Additionally, as a full water electrolysis catalyst in a water electrolyzer, it achieved a single-cell voltage of 1.965 V at a maximum current density of 500 mA cm⁻2 at 60 °C. This direct IL functionalization for CNTs facilitates the electron transfer process and ILs can serve as the electron acceptor with superior hydrogen adsorption.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.