Haowei Qiu , Rui Zhou , Xing Li , Jun Li , Hongyu Huang
{"title":"Numerical study of the spontaneous ignition mechanisms of pressurized hydrogen released inside pipes with different structures","authors":"Haowei Qiu , Rui Zhou , Xing Li , Jun Li , Hongyu Huang","doi":"10.1016/j.ijhydene.2024.11.117","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is considered a key clean energy carrier to achieve the global goal of carbon neutrality. But spontaneous ignition can occur when pressurized hydrogen is released into pipes, and the presence of different pipe structures will significantly affect the ignition mechanism. In this work, the effects of varied pipe structures on the shock wave propagation and spontaneous ignition characteristics are investigated by numerical simulation with the DNS-like approach, EDC combustion model, and 21-step detailed hydrogen combustion mechanism. Results show that the simulation is in well agreement with the experimental data. Five dominant spontaneous ignition mechanisms are provided depending on different pipe structures. Among all types of pipe structures investigated, contraction structures can lead to a greater increase in shock wave pressure due to more severe shock wave reflection and convergence. While enlargement structures can contribute to more mixing of hydrogen and air, causing more sufficient combustion. This study provides a comprehensive understanding and clear safety guidance to inform the practical application of hydrogen energy.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 420-432"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036031992404792X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is considered a key clean energy carrier to achieve the global goal of carbon neutrality. But spontaneous ignition can occur when pressurized hydrogen is released into pipes, and the presence of different pipe structures will significantly affect the ignition mechanism. In this work, the effects of varied pipe structures on the shock wave propagation and spontaneous ignition characteristics are investigated by numerical simulation with the DNS-like approach, EDC combustion model, and 21-step detailed hydrogen combustion mechanism. Results show that the simulation is in well agreement with the experimental data. Five dominant spontaneous ignition mechanisms are provided depending on different pipe structures. Among all types of pipe structures investigated, contraction structures can lead to a greater increase in shock wave pressure due to more severe shock wave reflection and convergence. While enlargement structures can contribute to more mixing of hydrogen and air, causing more sufficient combustion. This study provides a comprehensive understanding and clear safety guidance to inform the practical application of hydrogen energy.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.