{"title":"Standalone green hydrogen production powered by photovoltaic panels and solar atmospheric water harvesting hybrid system: Experimental investigation","authors":"Rania S. Nada , Mohamed Emam , Hamdy Hassan","doi":"10.1016/j.ijhydene.2024.11.221","DOIUrl":null,"url":null,"abstract":"<div><div>The current study experimentally investigates the performance of a hybrid standalone solar system of atmospheric water harvesting (AWH) and solar photovoltaic powering electrolyzer for green water and green hydrogen production. The system prototype is designed, constructed, and tested under outdoor summer and winter climate conditions of Alexandria, Egypt at different operating and design enhancement conditions. Water electrolyzes concept for green hydrogen production system driven by a photovoltaic panel and silica gel absorption/desorption atmospheric water harvesting solar still concept with insertion of porous sheet metals for freshwater production is performed and evaluated. The results show a rise of the AWH freshwater production of (60% and 120%) and (146% and 260%) in summer and winter, respectively with the insertion of one and two porous metal sheets, respectively. The maximum rise of the AWH efficiency is 82% in summer and 53.4% in winter by using 2 porous metal sheets. The hydrogen production rate of the system in summer is higher than that of winter by about 25%. System efficiency is almost doubled when electrolyzer KOH concentration increased from 4 gm/kg to 12 gm/kg water. The average daily system efficiency of the AWH, electrolyzer, and overall system reaches 11.6%, 65.1%, and 2.6% when operating at a KOH concentration of 12 gm/kg with two porous metal sheets. The study contributes to achieving mainly SDG goals 6, 7, and 13.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 984-996"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924049036","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current study experimentally investigates the performance of a hybrid standalone solar system of atmospheric water harvesting (AWH) and solar photovoltaic powering electrolyzer for green water and green hydrogen production. The system prototype is designed, constructed, and tested under outdoor summer and winter climate conditions of Alexandria, Egypt at different operating and design enhancement conditions. Water electrolyzes concept for green hydrogen production system driven by a photovoltaic panel and silica gel absorption/desorption atmospheric water harvesting solar still concept with insertion of porous sheet metals for freshwater production is performed and evaluated. The results show a rise of the AWH freshwater production of (60% and 120%) and (146% and 260%) in summer and winter, respectively with the insertion of one and two porous metal sheets, respectively. The maximum rise of the AWH efficiency is 82% in summer and 53.4% in winter by using 2 porous metal sheets. The hydrogen production rate of the system in summer is higher than that of winter by about 25%. System efficiency is almost doubled when electrolyzer KOH concentration increased from 4 gm/kg to 12 gm/kg water. The average daily system efficiency of the AWH, electrolyzer, and overall system reaches 11.6%, 65.1%, and 2.6% when operating at a KOH concentration of 12 gm/kg with two porous metal sheets. The study contributes to achieving mainly SDG goals 6, 7, and 13.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.