{"title":"Effect of oxygen enrichment and NH3 pre-cracking on laminar burning velocity and intrinsic instability of NH3/bio-syngas","authors":"Lijuan Wen, Qifeng Zhu, Jingwei Zeng, Haoxin Deng, Guoyan Chen, Xiaoping Wen, Fahui Wang, Qizheng Hao","doi":"10.1016/j.ijhydene.2024.11.121","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the laminar burning velocity (<em>S</em><sub><em>L</em></sub>) and instability of NH<sub>3</sub>/bio-syngas under different bio-syngas contents, oxygen enrichment factors (<em>Ω</em>), and the cracking ratio of NH<sub>3</sub> (<em>ζ</em>) using a constant-volume combustion bomb. The results show that increasing bio-syngas, <em>Ω</em>, and <em>ζ</em> effectively enhance the <em>S</em><sub><em>L</em></sub> of the fuel. Around <em>ζ</em> = 60%, the relationship between <em>S</em><sub><em>L</em></sub> and the NH<sub>3</sub> content before cracking is reversed. Increasing the bio-syngas and <em>ζ</em> enhance <em>S</em><sub><em>L</em></sub> through the chemical effect, while <em>Ω</em> primarily enhances <em>S</em><sub><em>L</em></sub> through the thermal effect. When <em>Ω</em> = 50%, the contribution of thermal effect can reach up to 94.53%. Linear stability analysis indicates that increasing the bio-syngas content and <em>ζ</em> reduces the critical Peclet number (<em>Pe</em><sub><em>c</em></sub>), while <em>Ω</em> increases <em>Pe</em><sub><em>c</em></sub>. As the bio-syngas content and <em>ζ</em> increase, the growth rate of perturbation (<em>∑</em>) monotonically increases, indicating instability. <em>Ω</em>, on the other hand, decreases <em>∑</em>, making it negative.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 485-496"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924047967","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the laminar burning velocity (SL) and instability of NH3/bio-syngas under different bio-syngas contents, oxygen enrichment factors (Ω), and the cracking ratio of NH3 (ζ) using a constant-volume combustion bomb. The results show that increasing bio-syngas, Ω, and ζ effectively enhance the SL of the fuel. Around ζ = 60%, the relationship between SL and the NH3 content before cracking is reversed. Increasing the bio-syngas and ζ enhance SL through the chemical effect, while Ω primarily enhances SL through the thermal effect. When Ω = 50%, the contribution of thermal effect can reach up to 94.53%. Linear stability analysis indicates that increasing the bio-syngas content and ζ reduces the critical Peclet number (Pec), while Ω increases Pec. As the bio-syngas content and ζ increase, the growth rate of perturbation (∑) monotonically increases, indicating instability. Ω, on the other hand, decreases ∑, making it negative.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.