Pd/CQDs/TiO2–NH2 composite schottky catalyst for efficient hydrogen production from formic acid dehydrogenation under visible light

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Fengqiu Chen , Qiu Wang , Shengda Lin , Huanhu Luo , Wanjin Yu , Wucan Liu , Dang-guo Cheng
{"title":"Pd/CQDs/TiO2–NH2 composite schottky catalyst for efficient hydrogen production from formic acid dehydrogenation under visible light","authors":"Fengqiu Chen ,&nbsp;Qiu Wang ,&nbsp;Shengda Lin ,&nbsp;Huanhu Luo ,&nbsp;Wanjin Yu ,&nbsp;Wucan Liu ,&nbsp;Dang-guo Cheng","doi":"10.1016/j.ijhydene.2024.11.176","DOIUrl":null,"url":null,"abstract":"<div><div>The development of photocatalytic materials with good adsorption capacity and high visible light activity is essential for efficient and stable photocatalytic hydrogen production from formic acid dehydrogenation. The wide band gap of TiO<sub>2</sub> photocatalyst materials limits their application in the field of visible light catalysis. In this work, a new composite material, Pd/CQDs/TiO<sub>2</sub>–NH<sub>2</sub>, is developed. Here, Pd is attached to amine-functionalized mesoporous titanium dioxide modified with carbon quantum dots (CQDs). This configuration is designed to enhance the catalytic activity for formic acid dehydrogenation when exposed to visible light. The Pd/CQDs-1/TiO<sub>2</sub>–NH<sub>2</sub> catalyst exhibited outstanding performance under visible light, achieving a turnover frequency (TOF) of 2666.1 h<sup>−1</sup> at 308 K and perfect hydrogen selectivity. Compared to the Pd/TiO<sub>2</sub>–NH<sub>2</sub> catalyst with a TOF of 1715.5 h<sup>−1</sup>, this is a significant improvement. The data implies that the addition of CQDs significantly increases light efficiency, aids in the separation of photogenerated charge carriers, and enhances hydrogen production. Ultimately, the experiments clarified how the combined action of Pd, CQDs, and TiO<sub>2</sub>–NH<sub>2</sub> synergistically boosts the catalytic dehydrogenation of formic acid under visible light. The findings present an innovative approach to improving Pd/TiO<sub>2</sub> schottky materials.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1136-1145"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048584","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of photocatalytic materials with good adsorption capacity and high visible light activity is essential for efficient and stable photocatalytic hydrogen production from formic acid dehydrogenation. The wide band gap of TiO2 photocatalyst materials limits their application in the field of visible light catalysis. In this work, a new composite material, Pd/CQDs/TiO2–NH2, is developed. Here, Pd is attached to amine-functionalized mesoporous titanium dioxide modified with carbon quantum dots (CQDs). This configuration is designed to enhance the catalytic activity for formic acid dehydrogenation when exposed to visible light. The Pd/CQDs-1/TiO2–NH2 catalyst exhibited outstanding performance under visible light, achieving a turnover frequency (TOF) of 2666.1 h−1 at 308 K and perfect hydrogen selectivity. Compared to the Pd/TiO2–NH2 catalyst with a TOF of 1715.5 h−1, this is a significant improvement. The data implies that the addition of CQDs significantly increases light efficiency, aids in the separation of photogenerated charge carriers, and enhances hydrogen production. Ultimately, the experiments clarified how the combined action of Pd, CQDs, and TiO2–NH2 synergistically boosts the catalytic dehydrogenation of formic acid under visible light. The findings present an innovative approach to improving Pd/TiO2 schottky materials.
Pd/CQDs/TiO2-NH2 复合肖特基催化剂用于在可见光下从甲酸脱氢中高效制氢
开发具有良好吸附能力和高可见光活性的光催化材料对于甲酸脱氢过程中高效稳定的光催化制氢至关重要。TiO2 光催化剂材料的宽带隙限制了其在可见光催化领域的应用。本研究开发了一种新型复合材料 Pd/CQDs/TiO2-NH2。在这种材料中,钯被附着在用碳量子点(CQDs)修饰的胺功能化介孔二氧化钛上。这种结构旨在提高甲酸在可见光照射下脱氢的催化活性。Pd/CQDs-1/TiO2-NH2 催化剂在可见光下表现出卓越的性能,在 308 K 时的翻转频率(TOF)达到 2666.1 h-1,并具有完美的氢选择性。与 TOF 为 1715.5 h-1 的 Pd/TiO2-NH2 催化剂相比,这是一个显著的进步。这些数据表明,CQDs 的加入大大提高了光效,有助于分离光生电荷载流子,并提高了制氢能力。最终,实验阐明了 Pd、CQDs 和 TiO2-NH2 的联合作用如何在可见光下协同促进甲酸的催化脱氢。这些发现为改进 Pd/TiO2 肖特基材料提供了一种创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信