Au nanoparticle-sensitized nitrogen-doped carbon applied for localized surface plasmon enhanced hydrogen evolution reaction

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Tong Liang, Yujie Tang, Yunqi Song, Kemin Xie, Yan Ma, Yao Yao
{"title":"Au nanoparticle-sensitized nitrogen-doped carbon applied for localized surface plasmon enhanced hydrogen evolution reaction","authors":"Tong Liang,&nbsp;Yujie Tang,&nbsp;Yunqi Song,&nbsp;Kemin Xie,&nbsp;Yan Ma,&nbsp;Yao Yao","doi":"10.1016/j.ijhydene.2024.11.207","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon-supported metal nanoparticles are indispensable catalysts to enabling catalytic water splitting technologies because of their unique size-dependent properties and strong metal-support interactions. Herein, we proposed a two-step synthesis strategy, using imine-type covalent organic frameworks (COFs) as a platform to synthesize nitrogen-doped carbon-supported Au with ultra-high specific surface area through the high-temperature pyrolysis. Thanks for the polarity of imine, the growth of Au NPs in Au<sub>x</sub>/NC are ultrafine, monodispersed, and the size of Au can be precisely controlled by adjusting the amount of the metal precursor during the carbothermal reaction. Such framework structure with numerous active sites provided by the COFs renders Au<sub>x</sub>/NC ultrahigh catalytic activity and durability for hydrogen evolution reaction (HER) in acid electrolyte. Most significantly, when illumination occurs, Au<sub>5nm</sub>/NC catalyst presents a reduced HER overpotential from 416 mV to 43 mV and a shrunken charge-transfer resistance from 258 to 17 Ω, making the Au<sub>5nm</sub>/NC a promising stable catalyst for the LSPR promoted hydrogen evolution reaction.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1106-1113"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048894","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-supported metal nanoparticles are indispensable catalysts to enabling catalytic water splitting technologies because of their unique size-dependent properties and strong metal-support interactions. Herein, we proposed a two-step synthesis strategy, using imine-type covalent organic frameworks (COFs) as a platform to synthesize nitrogen-doped carbon-supported Au with ultra-high specific surface area through the high-temperature pyrolysis. Thanks for the polarity of imine, the growth of Au NPs in Aux/NC are ultrafine, monodispersed, and the size of Au can be precisely controlled by adjusting the amount of the metal precursor during the carbothermal reaction. Such framework structure with numerous active sites provided by the COFs renders Aux/NC ultrahigh catalytic activity and durability for hydrogen evolution reaction (HER) in acid electrolyte. Most significantly, when illumination occurs, Au5nm/NC catalyst presents a reduced HER overpotential from 416 mV to 43 mV and a shrunken charge-transfer resistance from 258 to 17 Ω, making the Au5nm/NC a promising stable catalyst for the LSPR promoted hydrogen evolution reaction.
金纳米粒子敏化的掺氮碳应用于局部表面等离子体增强型氢进化反应
碳支撑金属纳米颗粒因其独特的尺寸依赖性和强大的金属-支撑相互作用而成为催化水分离技术不可或缺的催化剂。在此,我们提出了一种两步合成策略,以亚胺型共价有机框架(COFs)为平台,通过高温热解合成具有超高比表面积的氮掺杂碳支撑金。由于亚胺的极性,Aux/NC 中生长的 Au NPs 具有超细、单分散的特点,并且在碳热反应过程中可以通过调整金属前驱体的量来精确控制 Au 的尺寸。这种框架结构加上 COF 提供的大量活性位点,使得 Aux/NC 在酸性电解质中进行氢进化反应(HER)时具有超高的催化活性和耐久性。最重要的是,当光照发生时,Au5nm/NC 催化剂的氢进化反应过电位从 416 mV 降至 43 mV,电荷转移电阻从 258 Ω 降至 17 Ω,使 Au5nm/NC 成为 LSPR 促进氢进化反应的稳定催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信