Metal organic framework derived hollow heterostructured NiS2/ZnS/C hybrid spheres for enhanced sodium-ion storage properties

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Wang , Zhenni Huang , Shanshan Song , Qibo Xia , Junjie Sun , Jiaming Li , Lu Zhang , Xiuqing Qin , Zhujun Yao , Yefeng Yang
{"title":"Metal organic framework derived hollow heterostructured NiS2/ZnS/C hybrid spheres for enhanced sodium-ion storage properties","authors":"Shuai Wang ,&nbsp;Zhenni Huang ,&nbsp;Shanshan Song ,&nbsp;Qibo Xia ,&nbsp;Junjie Sun ,&nbsp;Jiaming Li ,&nbsp;Lu Zhang ,&nbsp;Xiuqing Qin ,&nbsp;Zhujun Yao ,&nbsp;Yefeng Yang","doi":"10.1016/j.mseb.2024.117810","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we report the fabrication of metal organic framework (MOF)-derived heterostructured NiS<sub>2</sub>/ZnS nanoparticles embedded in hollow carbon spheres (denoted as NiS<sub>2</sub>/ZnS/C) using Ni-MOF as template precursor through a combined method of solvothermal, ion adsorption and subsequent sulfurization. The hollow spherical morphology and in-situ carbon layer confinement of active materials offer rich channels and paths for rapid ion/electron transport, alleviate the volume changes and agglomeration effect during cycling. Moreover, the built-in electric field created at the heterointerfaces of NiS<sub>2</sub>/ZnS can promote the Na<sup>+</sup> transport kinetics. Benefitting from these advantages, the optimal NiS<sub>2</sub>/ZnS/C electrode shows a high reversible capacity (568 mAh/g at 1.0 A/g), superior rate property (401 mAh/g at 5.0 A/g) and outstanding long-term cycling stability (79 % retention over 3000 cycles at 5.0 A/g). This design concept is expected to be utilized for constructing other anode materials with heterostructures for SIBs.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117810"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006391","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we report the fabrication of metal organic framework (MOF)-derived heterostructured NiS2/ZnS nanoparticles embedded in hollow carbon spheres (denoted as NiS2/ZnS/C) using Ni-MOF as template precursor through a combined method of solvothermal, ion adsorption and subsequent sulfurization. The hollow spherical morphology and in-situ carbon layer confinement of active materials offer rich channels and paths for rapid ion/electron transport, alleviate the volume changes and agglomeration effect during cycling. Moreover, the built-in electric field created at the heterointerfaces of NiS2/ZnS can promote the Na+ transport kinetics. Benefitting from these advantages, the optimal NiS2/ZnS/C electrode shows a high reversible capacity (568 mAh/g at 1.0 A/g), superior rate property (401 mAh/g at 5.0 A/g) and outstanding long-term cycling stability (79 % retention over 3000 cycles at 5.0 A/g). This design concept is expected to be utilized for constructing other anode materials with heterostructures for SIBs.
金属有机框架衍生的空心异质结构 NiS2/ZnS/C 混合球增强钠离子存储性能
本文报道了以 Ni-MOF 为模板前驱体,通过溶热、离子吸附和后续硫化的组合方法,制备出嵌入空心碳球的金属有机框架(MOF)衍生异质结构 NiS2/ZnS 纳米粒子(简称 NiS2/ZnS/C)。活性材料的中空球形形态和原位碳层约束为离子/电子的快速传输提供了丰富的通道和路径,缓解了循环过程中的体积变化和团聚效应。此外,NiS2/ZnS 异质界面产生的内置电场可促进 Na+ 的传输动力学。得益于这些优势,最佳的 NiS2/ZnS/C 电极显示出较高的可逆容量(1.0 A/g 时为 568 mAh/g)、卓越的速率特性(5.0 A/g 时为 401 mAh/g)和出色的长期循环稳定性(5.0 A/g 时 3000 次循环的 79% 保持率)。这一设计理念有望用于构建其他具有异质结构的 SIB 负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信