Cheng Zhang , Yang Wang , Jun Xue , Junsong Li , Shujing Wang , Pengfei Jin , Xiaoshuai Shi , Cheng Zhang , Caihong Dou , Junyu Chen , Jinfeng Huang
{"title":"Investigating the thermal-chemical-mechanical coupling effects on the cracking behavior of machine gun barrel: Microstructural insights","authors":"Cheng Zhang , Yang Wang , Jun Xue , Junsong Li , Shujing Wang , Pengfei Jin , Xiaoshuai Shi , Cheng Zhang , Caihong Dou , Junyu Chen , Jinfeng Huang","doi":"10.1016/j.matchar.2024.114522","DOIUrl":null,"url":null,"abstract":"<div><div>The presence of severe cracks at the inner bore of the gun barrel accelerates the erosion failure, whereas the evolution and failure mechanism of crack tips under the thermal-chemical-mechanical coupling effects needs further investigation. Herein, the elemental distribution, phase structure, and strain surrounding the perpendicular and circumferential cracks in a failed gun barrel were investigated in detail by utilizing scanning electron microscopy (SEM), transmission Kikuchi diffraction (TKD), and transmission electron microscopy (TEM). Results indicated that the perpendicular crack was covered by double continuous layers composed of inner FeO oxides and outer Fe<sub>0.96</sub>S sulfides. Notably, a high-density precipitation of FeO oxides together with severe lattice distortion and localized amorphization was observed at the crack tip, accelerating the growth of the cracks. For the circumferential crack, the presence of fine recrystallized grains alongside coarsened M<sub>23</sub>C<sub>6</sub> carbides was observed at the crack tip. There was a high level of strain concentration along high-angle grain boundaries at the forefront of the circumferential crack tip, resulting in the cracking along grain boundaries. Furthermore, the models for propagation of perpendicular and circumferential cracks under the thermal-chemical-mechanical coupling effects were proposed respectively.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114522"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009033","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of severe cracks at the inner bore of the gun barrel accelerates the erosion failure, whereas the evolution and failure mechanism of crack tips under the thermal-chemical-mechanical coupling effects needs further investigation. Herein, the elemental distribution, phase structure, and strain surrounding the perpendicular and circumferential cracks in a failed gun barrel were investigated in detail by utilizing scanning electron microscopy (SEM), transmission Kikuchi diffraction (TKD), and transmission electron microscopy (TEM). Results indicated that the perpendicular crack was covered by double continuous layers composed of inner FeO oxides and outer Fe0.96S sulfides. Notably, a high-density precipitation of FeO oxides together with severe lattice distortion and localized amorphization was observed at the crack tip, accelerating the growth of the cracks. For the circumferential crack, the presence of fine recrystallized grains alongside coarsened M23C6 carbides was observed at the crack tip. There was a high level of strain concentration along high-angle grain boundaries at the forefront of the circumferential crack tip, resulting in the cracking along grain boundaries. Furthermore, the models for propagation of perpendicular and circumferential cracks under the thermal-chemical-mechanical coupling effects were proposed respectively.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.