Characterization of Fuel Cladding Chemical Interaction on a High Burnup U-10Zr Metallic Fuel via Electron Energy Loss Spectroscopy Enhanced by Machine Learning

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Arnold Pradhan , Fei Xu , Daniele Salvato , Indrajit Charit , Colin Judge , Luca Capriotti , Tiankai Yao
{"title":"Characterization of Fuel Cladding Chemical Interaction on a High Burnup U-10Zr Metallic Fuel via Electron Energy Loss Spectroscopy Enhanced by Machine Learning","authors":"Arnold Pradhan ,&nbsp;Fei Xu ,&nbsp;Daniele Salvato ,&nbsp;Indrajit Charit ,&nbsp;Colin Judge ,&nbsp;Luca Capriotti ,&nbsp;Tiankai Yao","doi":"10.1016/j.matchar.2024.114524","DOIUrl":null,"url":null,"abstract":"<div><div>Fuel cladding chemical interaction (FCCI) plays a key role in limiting the performance of metallic fuels in nuclear applications. A comprehensive analysis of chemical elements present in FCCI region is the basis for understanding the phenomena and developing potential mitigating strategies. The detection of low atomic number elements (Z &lt; 11) and lanthanide fission products is challenging for energy dispersive x-ray spectroscopy (EDS). This work used scanning transmission electron microscopy (STEM) based electron energy loss spectroscopy (EELS) to study the distribution of carbon and lanthanides in the FCCI region of a solid U-10Zr (wt%) fuel irradiated to 13.2 at. % burnup at the Fast Flux Testing Facility (FFTF). Processing the STEM-EELS data involved three major steps: 1) enhancing the signal-to-noise ratio by denoising the STEM-EELS spectra using principal component analysis (PCA) methods; 2) identification and mapping of chemical elements with core energy loss edges; 3) microstructural phase segmentation using the K-means clustering method. STEM-EELS analysis indicated the formation of zirconium carbide, a rind-like microstructural phase, in the FCCI region between fuel and cladding. The rind appeared to remain intact at this location for the studied burnup. The study also revealed a shift in the plasmon peak between zirconium-rich region and zirconium carbide. The STEM-EELS mappings demonstrated a different distribution of Ce from other lanthanide elements, such as La, Pr, and Nd, suggesting that the effect of lanthanides in the FCCI region should be separately investigated. The use of K-means clustering method on the STEM-EELS spectra of the FCCI region revealed different phases, especially Fe-Ce and Zr-C, that concurred with the findings from STEM-EELS elemental mappings.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114524"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009057","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Fuel cladding chemical interaction (FCCI) plays a key role in limiting the performance of metallic fuels in nuclear applications. A comprehensive analysis of chemical elements present in FCCI region is the basis for understanding the phenomena and developing potential mitigating strategies. The detection of low atomic number elements (Z < 11) and lanthanide fission products is challenging for energy dispersive x-ray spectroscopy (EDS). This work used scanning transmission electron microscopy (STEM) based electron energy loss spectroscopy (EELS) to study the distribution of carbon and lanthanides in the FCCI region of a solid U-10Zr (wt%) fuel irradiated to 13.2 at. % burnup at the Fast Flux Testing Facility (FFTF). Processing the STEM-EELS data involved three major steps: 1) enhancing the signal-to-noise ratio by denoising the STEM-EELS spectra using principal component analysis (PCA) methods; 2) identification and mapping of chemical elements with core energy loss edges; 3) microstructural phase segmentation using the K-means clustering method. STEM-EELS analysis indicated the formation of zirconium carbide, a rind-like microstructural phase, in the FCCI region between fuel and cladding. The rind appeared to remain intact at this location for the studied burnup. The study also revealed a shift in the plasmon peak between zirconium-rich region and zirconium carbide. The STEM-EELS mappings demonstrated a different distribution of Ce from other lanthanide elements, such as La, Pr, and Nd, suggesting that the effect of lanthanides in the FCCI region should be separately investigated. The use of K-means clustering method on the STEM-EELS spectra of the FCCI region revealed different phases, especially Fe-Ce and Zr-C, that concurred with the findings from STEM-EELS elemental mappings.
通过机器学习增强的电子能量损失能谱分析高燃耗 U-10Zr 金属燃料包层化学相互作用的特征
燃料包壳化学相互作用(FCCI)在限制核应用中金属燃料的性能方面起着关键作用。对 FCCI 区域中存在的化学元素进行全面分析,是理解这一现象和制定潜在缓解策略的基础。低原子序数元素(Z < 11)和镧系元素裂变产物的检测对于能量色散 X 射线光谱(EDS)来说具有挑战性。这项工作使用基于扫描透射电子显微镜(STEM)的电子能量损失光谱(EELS)来研究在快速通量反应堆中辐照至 13.2 at.在快速通量试验设施(FFTF)中辐照至 13.2 at.STEM-EELS 数据处理包括三个主要步骤:1) 使用主成分分析 (PCA) 方法对 STEM-EELS 光谱进行去噪处理,从而提高信噪比;2) 识别和绘制具有核心能量损失边缘的化学元素;3) 使用 K-means 聚类方法进行微结构相划分。STEM-EELS 分析表明,在燃料和包壳之间的 FCCI 区域形成了碳化锆,这是一种类似于磨砂的微观结构相。在所研究的燃烧过程中,碳化锆似乎在这一位置保持完好。研究还发现,富锆区域和碳化锆区域之间的等离子峰发生了移动。STEM-EELS 映射显示,铈与其他镧系元素(如镧、镨和钕)的分布不同,这表明应单独研究镧系元素在 FCCI 区域的影响。在 FCCI 区域的 STEM-EELS 光谱上使用 K-means 聚类方法发现了不同的相,特别是铁-铈和锆-铈,这与 STEM-EELS 元素映射的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信