On the mass concentration of normalized ground state solutions for non-autonomous Kirchhoff equations

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Miao Du , Xiaohan Gao
{"title":"On the mass concentration of normalized ground state solutions for non-autonomous Kirchhoff equations","authors":"Miao Du ,&nbsp;Xiaohan Gao","doi":"10.1016/j.aml.2024.109371","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on a class of non-autonomous Kirchhoff equations, that is, <span><math><mrow><mo>−</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mo>)</mo></mrow><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> are constants, <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> is unknown and appears as a Lagrange multiplier, <span><math><mrow><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mi>K</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> is a potential function. Under certain assumptions on the potential <span><math><mi>K</mi></math></span>, the concentration behavior of normalized ground state solutions is analyzed by using variational methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"161 ","pages":"Article 109371"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003914","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on a class of non-autonomous Kirchhoff equations, that is, (a+bR3|u|2dx)Δuλu=K(x)|u|p2u in R3, where a,b>0 are constants, λR is unknown and appears as a Lagrange multiplier, 2<p<6 and K:R3R is a potential function. Under certain assumptions on the potential K, the concentration behavior of normalized ground state solutions is analyzed by using variational methods.
论非自治基尔霍夫方程归一化基态解的质量浓度
本文主要研究一类非自治基尔霍夫方程,即 R3 中的-(a+b∫R3|∇u|2dx)Δu-λu=K(x)|u|p-2u,其中 a、b>0 为常数,λ∈R 为未知数并作为拉格朗日乘数出现,2<p<6,K:R3→R 为势函数。在电势 K 的某些假设条件下,利用变分法分析了归一化基态解的浓度行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信