{"title":"Bamboo-derived aerogel with atomically dispersed Co as a high-performance bifunctional electrocatalyst for durable zinc-air batteries","authors":"Zhengyu Yang , Ben Ma , Yingke Zhou","doi":"10.1016/j.jpowsour.2024.235787","DOIUrl":null,"url":null,"abstract":"<div><div>The development of highly efficient and durable bifunctional electrocatalysts is crucial for rechargeable zinc-air batteries, which have garnered significant attention as a promising sustainable energy storage technology. Herein, a novel Co-N-C-1050 catalyst is synthesized using a high-temperature gas transport method, where high purity cobalt powder and bamboo biomass aerogel are treated with ammonia gas at 1050 °C. The resulting catalyst exhibits a 3D interconnected porous network composed of dense carbon fibers, which atomically dispersed Co, N, and C elements are uniformly distributed. The synergistic integration of highly active Co single atoms and N-doped 3D carbon fiber aerogel enables Co-N-C-1050 to demonstrate excellent bifunctional electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), comparable to commercial Pt/C and RuO<sub>2</sub> catalysts. This catalyst has a half-wave potential of 0.842 V for ORR and a potential of 1.472 V at 10 mA cm<sup>−2</sup> for OER, outperforming N-C-1050 and benchmark catalysts. A zinc-air battery is driven by Co-N-C-1050 achieves a high power density of 135 mW/cm<sup>2</sup> and exceptional stability over 138 h of charge/discharge cycling, surpassing the higher-cost Pt/C + RuO<sub>2</sub> catalyst. This biomass aerogel based single-site Co-N-C catalyst offers a promising approach for developing high-efficiency and long-cycle-life zinc-air batteries.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"626 ","pages":"Article 235787"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017397","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of highly efficient and durable bifunctional electrocatalysts is crucial for rechargeable zinc-air batteries, which have garnered significant attention as a promising sustainable energy storage technology. Herein, a novel Co-N-C-1050 catalyst is synthesized using a high-temperature gas transport method, where high purity cobalt powder and bamboo biomass aerogel are treated with ammonia gas at 1050 °C. The resulting catalyst exhibits a 3D interconnected porous network composed of dense carbon fibers, which atomically dispersed Co, N, and C elements are uniformly distributed. The synergistic integration of highly active Co single atoms and N-doped 3D carbon fiber aerogel enables Co-N-C-1050 to demonstrate excellent bifunctional electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), comparable to commercial Pt/C and RuO2 catalysts. This catalyst has a half-wave potential of 0.842 V for ORR and a potential of 1.472 V at 10 mA cm−2 for OER, outperforming N-C-1050 and benchmark catalysts. A zinc-air battery is driven by Co-N-C-1050 achieves a high power density of 135 mW/cm2 and exceptional stability over 138 h of charge/discharge cycling, surpassing the higher-cost Pt/C + RuO2 catalyst. This biomass aerogel based single-site Co-N-C catalyst offers a promising approach for developing high-efficiency and long-cycle-life zinc-air batteries.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems