{"title":"In-situ reaction-generation self-healing superior antioxidation layer induced by Al-Y sol-gel film on the AISI304 steel","authors":"Hongtao Chen, Hao Wu, Enhao Wang, Sicong Zhao, Yicheng Feng, Erjun Guo","doi":"10.1016/j.mtla.2024.102280","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an Al-Y sol-gel film is prepared on the AISI304 steel and its effect on the high temperature oxidation resistance is evaluated by the cycle oxidation at 900 ℃ in the air. The resulting intact oxide layer, composed of (Al, Cr)<sub>2</sub>O<sub>3</sub> and MnCr<sub>2</sub>O<sub>4</sub> phases, effectively slowing down the oxidation rates at 900 ℃. The general cracks in the sol-gel film during the oxidation process are found to be self-healed by a growing spinel MnCr<sub>2</sub>O<sub>4</sub> phase from the substrate, attributed to its low Gibbs free energy and the sufficient Cr source from the adjacent substrate. Furthermore, the oxide layer originates from the interaction between sol-gel film and the substrate which enhances the binding between the oxide layer and the substrate. Thus, it could be confirmed that a self-healing superior antioxidation layer is generated on the surface of AISI304 steel through an in-situ reaction induced by the Al-Y sol-gel film during high-temperature oxidation procedure.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102280"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an Al-Y sol-gel film is prepared on the AISI304 steel and its effect on the high temperature oxidation resistance is evaluated by the cycle oxidation at 900 ℃ in the air. The resulting intact oxide layer, composed of (Al, Cr)2O3 and MnCr2O4 phases, effectively slowing down the oxidation rates at 900 ℃. The general cracks in the sol-gel film during the oxidation process are found to be self-healed by a growing spinel MnCr2O4 phase from the substrate, attributed to its low Gibbs free energy and the sufficient Cr source from the adjacent substrate. Furthermore, the oxide layer originates from the interaction between sol-gel film and the substrate which enhances the binding between the oxide layer and the substrate. Thus, it could be confirmed that a self-healing superior antioxidation layer is generated on the surface of AISI304 steel through an in-situ reaction induced by the Al-Y sol-gel film during high-temperature oxidation procedure.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).