Linshuang Tian , Feihu Mu , Minghao Liu , Xujing Guo , Benlin Dai
{"title":"One-step construction of defective Fe-doped MIL-68(In)–NH2 for efficient photocatalytic degradation of bisphenol A","authors":"Linshuang Tian , Feihu Mu , Minghao Liu , Xujing Guo , Benlin Dai","doi":"10.1016/j.matlet.2024.137655","DOIUrl":null,"url":null,"abstract":"<div><div>Defective Fe-doped MIL-68(In)–NH<sub>2</sub> (Fe-MIL68) was successfully synthesized for photocatalytic bisphenol A (BPA) degradation in one step via a simple hydrothermal method for the first time. The presence of mesoporous structure and oxygen vacancies in Fe-doped Fe-MIL68 was confirmed using modern characterization techniques, which can significantly improve its adsorption performance and electron-hole separation ability, thus enhancing its photocatalytic activity. The results confirmed the photodegradation efficiency of Fe-MIL68 for BPA under visible light could reach 92.3 % in 100 min, which was 2.1 times higher than that of MIL-68(In)–NH<sub>2</sub>.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137655"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24017956","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Defective Fe-doped MIL-68(In)–NH2 (Fe-MIL68) was successfully synthesized for photocatalytic bisphenol A (BPA) degradation in one step via a simple hydrothermal method for the first time. The presence of mesoporous structure and oxygen vacancies in Fe-doped Fe-MIL68 was confirmed using modern characterization techniques, which can significantly improve its adsorption performance and electron-hole separation ability, thus enhancing its photocatalytic activity. The results confirmed the photodegradation efficiency of Fe-MIL68 for BPA under visible light could reach 92.3 % in 100 min, which was 2.1 times higher than that of MIL-68(In)–NH2.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive