Enhanced photocatalytic properties of TiO2/rGO nanocomposites Doped with CdS

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Evgeniya Seliverstova , Timur Serikov , Aigul Sadykova , Niyazbek Ibrayev , Nurxat Nuraje
{"title":"Enhanced photocatalytic properties of TiO2/rGO nanocomposites Doped with CdS","authors":"Evgeniya Seliverstova ,&nbsp;Timur Serikov ,&nbsp;Aigul Sadykova ,&nbsp;Niyazbek Ibrayev ,&nbsp;Nurxat Nuraje","doi":"10.1016/j.matlet.2024.137660","DOIUrl":null,"url":null,"abstract":"<div><div>To increase the photocatalytic activity of nanocomposite based on TiO<sub>2</sub> and rGO (NC) and improve its photosensitivity in the visible region of the spectrum, the influence of CdS concentration (1 to 10 wt% with respect to NC) on its physicochemical and photocatalytic properties was studied. The addition of CdS to NC leads to a significant increase in the photocatalytic activity. An almost fivefold increase in photocurrent compared to pure NC was registered for NC/CdS_5%. Data on Methylene blue photodegradation showed that after 210 min of irradiation, only 5 % of dye molecules remained in solution. This value is 14.4 and 11.6 times higher than that of pure NC or CdS, respectively. Enhanced photocatalytic activity is related both to the improvement of NC absorption in the region of 400–800 nm and the decrease of the band gap width of NC upon addition of CdS, as well as the significant change in the electrophysical characteristics of the nanocomposite.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137660"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018007","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To increase the photocatalytic activity of nanocomposite based on TiO2 and rGO (NC) and improve its photosensitivity in the visible region of the spectrum, the influence of CdS concentration (1 to 10 wt% with respect to NC) on its physicochemical and photocatalytic properties was studied. The addition of CdS to NC leads to a significant increase in the photocatalytic activity. An almost fivefold increase in photocurrent compared to pure NC was registered for NC/CdS_5%. Data on Methylene blue photodegradation showed that after 210 min of irradiation, only 5 % of dye molecules remained in solution. This value is 14.4 and 11.6 times higher than that of pure NC or CdS, respectively. Enhanced photocatalytic activity is related both to the improvement of NC absorption in the region of 400–800 nm and the decrease of the band gap width of NC upon addition of CdS, as well as the significant change in the electrophysical characteristics of the nanocomposite.

Abstract Image

增强掺杂 CdS 的 TiO2/rGO 纳米复合材料的光催化性能
为了提高基于 TiO2 和 rGO(NC)的纳米复合材料的光催化活性,并改善其在光谱可见区的光敏性,研究了 CdS 浓度(相对于 NC 为 1 至 10 wt%)对其物理化学和光催化特性的影响。在 NC 中添加 CdS 可显著提高光催化活性。与纯 NC 相比,NC/CdS_5% 的光电流几乎增加了五倍。亚甲基蓝的光降解数据显示,经过 210 分钟的辐照后,只有 5% 的染料分子留在溶液中。这一数值分别是纯 NC 或 CdS 的 14.4 倍和 11.6 倍。光催化活性的增强既与加入 CdS 后 NC 在 400-800 纳米波长区域吸收率的提高和 NC 带隙宽度的减小有关,也与纳米复合材料的电物理特性的显著变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信