Lithium-philic organic polymer@mixed-phase TiO2 core-shell nanospheres for high-rate and long-cyclic performance in liquid/solid-state lithium-ion batteries

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Zhicheng Song, Qiang Zhou, Jin Zeng, Wan Zhang, Shuxin Zhuang, Hao Luo, Mi Lu, Xiaodan Li
{"title":"Lithium-philic organic polymer@mixed-phase TiO2 core-shell nanospheres for high-rate and long-cyclic performance in liquid/solid-state lithium-ion batteries","authors":"Zhicheng Song,&nbsp;Qiang Zhou,&nbsp;Jin Zeng,&nbsp;Wan Zhang,&nbsp;Shuxin Zhuang,&nbsp;Hao Luo,&nbsp;Mi Lu,&nbsp;Xiaodan Li","doi":"10.1016/j.jpowsour.2024.235782","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issues of slow capacity activation and poor stability faced by organic polymer electrodes, this study, proposed a synergistic lithium storage effect derived from modified polydopamine sphere by mixed-phase TiO<sub>2</sub> shell of anatase TiO<sub>2</sub>, rutile TiO<sub>2</sub>, and TiO<sub>2</sub>(B), synthesizing polydopamine@mixed-phase TiO<sub>2</sub> (PDA@mp-TiO<sub>2</sub>) core-shell nanospheres. The in-situ growth of mixed-phase TiO<sub>2</sub> grains induces the partial oxidation of hydroxyl groups in polydopamine to quinone groups, making the C=O groups and benzene rings more active for lithium storage and thus improving the reversible capacity. The coordination between mixed-phase TiO<sub>2</sub> and polydopamine reduces the spatial hindrance effect among polydopamine long chains, endowing extra stable channels for rapid adsorption and diffusion of lithium ion. Moreover, the mixed-phase TiO<sub>2</sub> shell intercepts side reactions between organic groups of the electrolyte and polydopamine without affecting electron-ion transport, promotes the formation of a fluorine-rich inorganic SEI layer, improving the long-term cycling stability of the PDA@mp-TiO<sub>2</sub> electrode. In the liquid lithium-ion batteries, the PDA@mp-TiO<sub>2</sub> electrode exhibits an unprecedented reversible capacity at low current densities. Furthermore, the PDA@mp-TiO<sub>2</sub> demonstrates an ultra high-rate long cyclic life. As the anode for solid-state lithium-ion batteries, PDA@mp-TiO<sub>2</sub> also achieves up to 90 % capacity retention under high current densities.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"626 ","pages":"Article 235782"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017348","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issues of slow capacity activation and poor stability faced by organic polymer electrodes, this study, proposed a synergistic lithium storage effect derived from modified polydopamine sphere by mixed-phase TiO2 shell of anatase TiO2, rutile TiO2, and TiO2(B), synthesizing polydopamine@mixed-phase TiO2 (PDA@mp-TiO2) core-shell nanospheres. The in-situ growth of mixed-phase TiO2 grains induces the partial oxidation of hydroxyl groups in polydopamine to quinone groups, making the C=O groups and benzene rings more active for lithium storage and thus improving the reversible capacity. The coordination between mixed-phase TiO2 and polydopamine reduces the spatial hindrance effect among polydopamine long chains, endowing extra stable channels for rapid adsorption and diffusion of lithium ion. Moreover, the mixed-phase TiO2 shell intercepts side reactions between organic groups of the electrolyte and polydopamine without affecting electron-ion transport, promotes the formation of a fluorine-rich inorganic SEI layer, improving the long-term cycling stability of the PDA@mp-TiO2 electrode. In the liquid lithium-ion batteries, the PDA@mp-TiO2 electrode exhibits an unprecedented reversible capacity at low current densities. Furthermore, the PDA@mp-TiO2 demonstrates an ultra high-rate long cyclic life. As the anode for solid-state lithium-ion batteries, PDA@mp-TiO2 also achieves up to 90 % capacity retention under high current densities.

Abstract Image

亲锂有机聚合物@混合相 TiO2 核壳纳米球在液态/固态锂离子电池中实现高倍率和长循环性能
针对有机聚合物电极面临的容量激活慢、稳定性差等问题,本研究提出了锐钛矿型TiO2、金红石型TiO2和TiO2(B)混合相TiO2壳修饰聚多巴胺球,合成聚多巴胺@混合相TiO2(PDA@mp-TiO2)核壳纳米球的协同储锂效应。混相 TiO2 晶粒的原位生长诱导多巴胺中的羟基部分氧化成醌基,使 C=O 基团和苯环对锂存储更有活性,从而提高了可逆容量。混相二氧化钛和多巴胺之间的配位降低了多巴胺长链之间的空间阻碍效应,为锂离子的快速吸附和扩散提供了额外的稳定通道。此外,混相 TiO2 外壳还能拦截电解液中有机基团与多巴胺之间的副反应,不影响电子离子的传输,促进富氟无机 SEI 层的形成,提高 PDA@mp-TiO2 电极的长期循环稳定性。在液态锂离子电池中,PDA@mp-TiO2电极在低电流密度下表现出前所未有的可逆容量。此外,PDA@mp-TiO2 还具有超高速长循环寿命。作为固态锂离子电池的阳极,PDA@mp-TiO2 还能在高电流密度下实现高达 90% 的容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信