Novel ultralight carbon foam reinforced carbon aerogel composites with low volume shrinkage and excellent thermal insulation performance

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ruyi Sha , Bingzhu Wang , Jixiang Dai , Jianjun Sha
{"title":"Novel ultralight carbon foam reinforced carbon aerogel composites with low volume shrinkage and excellent thermal insulation performance","authors":"Ruyi Sha ,&nbsp;Bingzhu Wang ,&nbsp;Jixiang Dai ,&nbsp;Jianjun Sha","doi":"10.1016/j.carbon.2024.119826","DOIUrl":null,"url":null,"abstract":"<div><div>Lightweight carbon aerogels are attractive for thermal insulation due to their low thermal conductivity and excellent high-temperature resistance under extreme environments. However, the preparation of monolithic carbon aerogels from phenolic resin precursor always faces the problem of large volumetric shrinkage during the drying and carbonization processes, thus resulting in the increasing density and thermal conductivity of aerogels. Here, to solve such issues, ultralight and rigid carbon foam was designed and synthesized as the reinforcement to fabricate carbon aerogel composites (CACs), which could significantly enhance the shrinkage resistance of monolithic carbon aerogels. The high rigidity of the carbon foam reinforcements (CFRs) was achieved through a pre-carbonization process, which also endowed the CFRs with a matched shrinkage with the monolithic carbon aerogels. As a result, the obtained CACs reinforced by the rigid CFRs showed not only crack-free structures, but also quite low shrinkage, which was about 5.9 % after carbonization. The low shrinkage of CACs then endowed them with quite low density (21.5 mg cm<sup>−3</sup>) and excellent thermal insulation performance (25.9 mW m<sup>−1</sup> K<sup>−1</sup>). Furthermore, due to a highly rough nanostructure, the CACs also possessed outstanding hydrophobicity. These merits make the CACs a promising thermal insulation material even in humid environments.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010455","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight carbon aerogels are attractive for thermal insulation due to their low thermal conductivity and excellent high-temperature resistance under extreme environments. However, the preparation of monolithic carbon aerogels from phenolic resin precursor always faces the problem of large volumetric shrinkage during the drying and carbonization processes, thus resulting in the increasing density and thermal conductivity of aerogels. Here, to solve such issues, ultralight and rigid carbon foam was designed and synthesized as the reinforcement to fabricate carbon aerogel composites (CACs), which could significantly enhance the shrinkage resistance of monolithic carbon aerogels. The high rigidity of the carbon foam reinforcements (CFRs) was achieved through a pre-carbonization process, which also endowed the CFRs with a matched shrinkage with the monolithic carbon aerogels. As a result, the obtained CACs reinforced by the rigid CFRs showed not only crack-free structures, but also quite low shrinkage, which was about 5.9 % after carbonization. The low shrinkage of CACs then endowed them with quite low density (21.5 mg cm−3) and excellent thermal insulation performance (25.9 mW m−1 K−1). Furthermore, due to a highly rough nanostructure, the CACs also possessed outstanding hydrophobicity. These merits make the CACs a promising thermal insulation material even in humid environments.
具有低体积收缩和优异隔热性能的新型超轻碳泡沫增强碳气凝胶复合材料
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信