MXene-CNTs/Co dielectric-electromagnetic synergistic composites with multi-heterogeneous interfaces for microwave absorption

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yongqi Zhao , Jingjing Wang , Danyi Yang , Zhao Du , Xinyu Zhi , Rongrong Yu , Zhonglu Guo , Chengchun Tang , Yi Fang
{"title":"MXene-CNTs/Co dielectric-electromagnetic synergistic composites with multi-heterogeneous interfaces for microwave absorption","authors":"Yongqi Zhao ,&nbsp;Jingjing Wang ,&nbsp;Danyi Yang ,&nbsp;Zhao Du ,&nbsp;Xinyu Zhi ,&nbsp;Rongrong Yu ,&nbsp;Zhonglu Guo ,&nbsp;Chengchun Tang ,&nbsp;Yi Fang","doi":"10.1016/j.carbon.2024.119825","DOIUrl":null,"url":null,"abstract":"<div><div>In view of the growing concern over electromagnetic wave pollution, the evolution of efficient microwave absorbing (MA) composites has emerged as a pivotal research area for scientists and engineers. In this study, MXene-CNTs/Co (MCC) composites with tunable and efficient MA properties were successfully prepared from a structural design perspective that capitalizes on dielectric-magnetic synergy. The electromagnetic properties of the composites were effectively regulated by adjusting the length and content of the CNTs. As expected, the design of the MCC composite absorber has a minimum reflection loss (RL<sub>min</sub>) of −62.53 dB with a matched thickness of 1.59 mm. With an effective absorption bandwidth (EAB) of 4.20 GHz (12.48–16.68 GHz) and a matched thickness of 1.38 mm, the RL<sub>min</sub> remains an impressive −41.29 dB. The exceptional MA characteristics are ascribed to its distinctive three-dimensional (3D) electromagnetic network configuration, which optimizes impedance matching and augments multi-component polarization loss and reflection/scattering capabilities. The findings of this study offer novel insights and methodologies for the advancement of efficient and tunable microwave absorbing materials.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010443","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the growing concern over electromagnetic wave pollution, the evolution of efficient microwave absorbing (MA) composites has emerged as a pivotal research area for scientists and engineers. In this study, MXene-CNTs/Co (MCC) composites with tunable and efficient MA properties were successfully prepared from a structural design perspective that capitalizes on dielectric-magnetic synergy. The electromagnetic properties of the composites were effectively regulated by adjusting the length and content of the CNTs. As expected, the design of the MCC composite absorber has a minimum reflection loss (RLmin) of −62.53 dB with a matched thickness of 1.59 mm. With an effective absorption bandwidth (EAB) of 4.20 GHz (12.48–16.68 GHz) and a matched thickness of 1.38 mm, the RLmin remains an impressive −41.29 dB. The exceptional MA characteristics are ascribed to its distinctive three-dimensional (3D) electromagnetic network configuration, which optimizes impedance matching and augments multi-component polarization loss and reflection/scattering capabilities. The findings of this study offer novel insights and methodologies for the advancement of efficient and tunable microwave absorbing materials.
具有多异质界面的 MXene-CNTs/Co 微波吸收介电电磁协同复合材料
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信