{"title":"Construction of flexible magnetic carbon nanofibers by core-shell MOF derivatives for optimizing microwave absorption","authors":"Luyao Han, Haibo Yang, Zhixin Cai, Ying Lin","doi":"10.1016/j.carbon.2024.119817","DOIUrl":null,"url":null,"abstract":"<div><div>Although carbon fibers have significant dielectric loss, poor impedance matching often results in a narrow effective absorption bandwidth, which in turn induces unsatisfactory microwave absorption (MA). The composition and microstructure are remarkably critical factors in order to optimize the MA performance. Herein, the flexible magnetic carbon nanofibers (CoFe@CNFs) were prepared based on one-dimensional carbon nanofibers and core-shell MOF derivatives by electrospinning technology and subsequent high-temperature heat treatment. The integration of core-shell ZIF-67@ CoFe-PBA derivatives, the three-dimensionalconductive network of carbon nanofibers and the synergistic magnetic loss and dielectric loss significantly optimizes the impedance matching, which enables the CoFe@CNFs to simultaneously achieve favorable MA performance and lightweight characteristics. The CoFe@CNFs show a minimum reflection loss value of −47.9 dB and the maximum effective absorption bandwidth of 6.5 GHz when the filling ratio is only 7.5 wt%. In addition, the complex composition and unique microstructure endow the composites with excellent flexibility. This work provides a meaningful guidance for constructing lightweight MA materials with broadband absorption characteristics.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010364","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although carbon fibers have significant dielectric loss, poor impedance matching often results in a narrow effective absorption bandwidth, which in turn induces unsatisfactory microwave absorption (MA). The composition and microstructure are remarkably critical factors in order to optimize the MA performance. Herein, the flexible magnetic carbon nanofibers (CoFe@CNFs) were prepared based on one-dimensional carbon nanofibers and core-shell MOF derivatives by electrospinning technology and subsequent high-temperature heat treatment. The integration of core-shell ZIF-67@ CoFe-PBA derivatives, the three-dimensionalconductive network of carbon nanofibers and the synergistic magnetic loss and dielectric loss significantly optimizes the impedance matching, which enables the CoFe@CNFs to simultaneously achieve favorable MA performance and lightweight characteristics. The CoFe@CNFs show a minimum reflection loss value of −47.9 dB and the maximum effective absorption bandwidth of 6.5 GHz when the filling ratio is only 7.5 wt%. In addition, the complex composition and unique microstructure endow the composites with excellent flexibility. This work provides a meaningful guidance for constructing lightweight MA materials with broadband absorption characteristics.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.