Liouville-type theorem for higher order Hardy-Hénon type systems on the sphere

IF 1.2 3区 数学 Q1 MATHEMATICS
Rong Zhang , Vishvesh Kumar , Michael Ruzhansky
{"title":"Liouville-type theorem for higher order Hardy-Hénon type systems on the sphere","authors":"Rong Zhang ,&nbsp;Vishvesh Kumar ,&nbsp;Michael Ruzhansky","doi":"10.1016/j.jmaa.2024.129029","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study Liouville type theorems for the positive solutions to the following higher order Hardy-Hénon type system involving the conformal GJMS operator on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In order to study this we first employ the Mobius transform to transform the above Hardy-Hénon type system on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> into a higher order elliptic system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Then, we show that every positive solution of the higher order elliptic system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a solution to the associated integral system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> by using polyharmonic average and iteration arguments. We use the method of moving planes in integral form to prove that there are no positive solutions for the integral system on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Finally, together with the symmetry of the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we obtain the Liouville type theorem of the higher order Hardy-Hénon type system involving the GJMS operator on the sphere. The results of this paper are also new even for the Lane-Emden system on the sphere.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129029"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400951X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study Liouville type theorems for the positive solutions to the following higher order Hardy-Hénon type system involving the conformal GJMS operator on the sphere Sn. In order to study this we first employ the Mobius transform to transform the above Hardy-Hénon type system on the sphere Sn into a higher order elliptic system on Rn. Then, we show that every positive solution of the higher order elliptic system on Rn is a solution to the associated integral system on Rn by using polyharmonic average and iteration arguments. We use the method of moving planes in integral form to prove that there are no positive solutions for the integral system on Rn. Finally, together with the symmetry of the sphere Sn, we obtain the Liouville type theorem of the higher order Hardy-Hénon type system involving the GJMS operator on the sphere. The results of this paper are also new even for the Lane-Emden system on the sphere.
球面上高阶哈迪-赫农类型系统的刘维尔型定理
在本文中,我们将研究球 Sn 上涉及保角 GJMS 算子的下列高阶哈代赫农型系统正解的柳维尔类型定理。为了研究这个问题,我们首先利用莫比斯变换(Mobius transform)将上述球 Sn 上的 Hardy-Hénon 型系统变换为 Rn 上的高阶椭圆系统。然后,我们利用多谐平均和迭代论证证明 Rn 上高阶椭圆系统的每个正解都是 Rn 上相关积分系统的解。我们用积分形式移动平面的方法证明 Rn 上的积分系统没有正解。最后,结合球 Sn 的对称性,我们得到了涉及球上 GJMS 算子的高阶哈代-赫农型系统的柳维尔定理。即使对于球面上的 Lane-Emden 系统,本文的结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信