Multiplicative Hecke operators and their applications

IF 1.2 3区 数学 Q1 MATHEMATICS
Chang Heon Kim, Gyucheol Shin
{"title":"Multiplicative Hecke operators and their applications","authors":"Chang Heon Kim,&nbsp;Gyucheol Shin","doi":"10.1016/j.jmaa.2024.129002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we define the multiplicative Hecke operators <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for any positive integer on the integral weight meromorphic modular forms for <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span>. We then show that they have properties similar to those of additive Hecke operators. Moreover, we prove that multiplicative Hecke eigenforms with integer Fourier coefficients are eta quotients, and vice versa. In addition, we prove that the Borcherds product and logarithmic derivative are Hecke equivariant with the multiplicative Hecke operators and the Hecke operators on the half-integral weight harmonic weak Maass forms and weight 2 meromorphic modular forms.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129002"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009247","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we define the multiplicative Hecke operators T(n) for any positive integer on the integral weight meromorphic modular forms for Γ0(N). We then show that they have properties similar to those of additive Hecke operators. Moreover, we prove that multiplicative Hecke eigenforms with integer Fourier coefficients are eta quotients, and vice versa. In addition, we prove that the Borcherds product and logarithmic derivative are Hecke equivariant with the multiplicative Hecke operators and the Hecke operators on the half-integral weight harmonic weak Maass forms and weight 2 meromorphic modular forms.
乘法赫克算子及其应用
在本文中,我们定义了Γ0(N)的积分重合形模态上任意正整数的乘法赫克算子 T(n)。然后,我们证明它们具有与加法赫克算子类似的性质。此外,我们还证明了具有整数傅里叶系数的乘法赫克特征形式是 eta 商,反之亦然。此外,我们还证明了鲍彻德斯积和对数导数与乘法赫克算子以及半积分权谐弱马斯形式和权 2 非定常模形式上的赫克算子是赫克等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信