{"title":"Two mixed virtual element formulations for parabolic integro-differential equations with nonsmooth initial data","authors":"Meghana Suthar , Sangita Yadav","doi":"10.1016/j.jmaa.2024.128981","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents and examines two distinctive approaches to the mixed virtual element method (VEM) applied to parabolic integro-differential equations (PIDEs) with non-smooth initial data. In the first part of the paper, we introduce and analyze a mixed virtual element scheme for PIDE that eliminates the need for the resolvent operator. Through the introduction of a novel projection involving a memory term, coupled with the application of energy arguments and the repeated use of an integral operator, this study establishes optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-error estimates for the two unknowns <em>p</em> and <strong><em>σ</em></strong>. Furthermore, optimal error estimates are derived for the standard mixed formulation with a resolvent kernel. The paper offers a comprehensive analysis of the VEM, encompassing both formulations.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128981"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400903X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents and examines two distinctive approaches to the mixed virtual element method (VEM) applied to parabolic integro-differential equations (PIDEs) with non-smooth initial data. In the first part of the paper, we introduce and analyze a mixed virtual element scheme for PIDE that eliminates the need for the resolvent operator. Through the introduction of a novel projection involving a memory term, coupled with the application of energy arguments and the repeated use of an integral operator, this study establishes optimal -error estimates for the two unknowns p and σ. Furthermore, optimal error estimates are derived for the standard mixed formulation with a resolvent kernel. The paper offers a comprehensive analysis of the VEM, encompassing both formulations.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.