Strange attractor of the Lozi mappings for the parameter region [0
IF 1.2 3区 数学 Q1 MATHEMATICS
Khadija Ben Rejeb
{"title":"Strange attractor of the Lozi mappings for the parameter region [0<b<1,b+1<a<2−b2]","authors":"Khadija Ben Rejeb","doi":"10.1016/j.jmaa.2024.129018","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we give a mathematical proof to the existence of a strange attractor for the Lozi mapping <em>L</em>. More precisely, we prove that <em>L</em> has a unique strange attractor for the parameter region [<span><math><mn>0</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>b</mi><mo>+</mo><mn>1</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mn>2</mn><mo>−</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>] which coincides with the closure of the unstable manifold at the fixed point <span><math><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow></mfrac><mo>)</mo></math></span>. This extends a result obtained by (M. Misiurewicz, Strange attractor for the Lozi mapping, Ann.N.Y. Acad. Sci. 357, (1980), pp. 348-358). On the other hand, we study the dynamical behavior of the map <em>L</em> on its strange attractor and we prove that it is Li-Yorke chaotic. MSC 2010 Primary: 37D45, 37E30.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129018"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009405","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give a mathematical proof to the existence of a strange attractor for the Lozi mapping L. More precisely, we prove that L has a unique strange attractor for the parameter region [0<b<1,b+1<a<2b2] which coincides with the closure of the unstable manifold at the fixed point (11+ab,b1+ab). This extends a result obtained by (M. Misiurewicz, Strange attractor for the Lozi mapping, Ann.N.Y. Acad. Sci. 357, (1980), pp. 348-358). On the other hand, we study the dynamical behavior of the map L on its strange attractor and we prove that it is Li-Yorke chaotic. MSC 2010 Primary: 37D45, 37E30.
参数区域 [0
更确切地说,我们证明了洛齐映射 L 在参数区域 [0<b<1,b+1<a<2-b2] 有一个唯一的奇异吸引子,它与不稳定流形在定点 (11+a-b,b1+a-b) 的闭合重合。这扩展了 (M. Misiurewicz, Strange attractor for the Lozi mapping, Ann.N.Y. Acad.357, (1980), pp.)另一方面,我们研究了映射 L 在其奇异吸引子上的动力学行为,并证明它是李-约克混沌的。MSC 2010 Primary: 37D45, 37E30.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享

联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信