The Lomonosov type theorems and the invariant subspace problem for non-archimedean Banach spaces

IF 1.2 3区 数学 Q1 MATHEMATICS
A. El Asri , A. Kubzdela , M. Babahmed
{"title":"The Lomonosov type theorems and the invariant subspace problem for non-archimedean Banach spaces","authors":"A. El Asri ,&nbsp;A. Kubzdela ,&nbsp;M. Babahmed","doi":"10.1016/j.jmaa.2024.129043","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the existence of invariant (and even hyperinvariant) subspaces of bounded operators on a non-archimedean Banach space <span><math><mi>E</mi><mo>=</mo><mo>(</mo><mi>E</mi><mo>,</mo><mo>‖</mo><mo>.</mo><mo>‖</mo><mo>)</mo></math></span> over a valued field <span><math><mi>K</mi></math></span> equipped with a non-trivial non-archimedean valuation <span><math><mo>|</mo><mo>.</mo><mo>|</mo></math></span>. Specifically, we consider compact operators and operators that commute with a compact operator. First we show that if <strong>E</strong> has a base, then any compact operator <strong>T</strong> such that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⁡</mo><msup><mrow><mo>‖</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>‖</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup><mo>&gt;</mo><mn>0</mn></math></span> has a finite-dimensional hyperinvariant subspace. Next we show that if <span><math><mi>K</mi></math></span> is locally compact, then every compact operator <strong>T</strong> on <strong>E</strong> has a hyperinvariant subspace. Afterward, assuming that <span><math><mi>K</mi></math></span> is spherically complete or <strong>E</strong> is of countable type, we provide a necessary condition for a bounded operator on <strong>E</strong> to have a hyperinvariant subspace. We demonstrate that the classical Lomonosov Invariant Subspace theorem does not hold in the case where <span><math><mi>K</mi></math></span> is non-spherically complete. Finally, we prove Lomonosov type theorem for spectral quasinilpotent operators, when <span><math><mi>K</mi></math></span> is locally compact.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129043"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400965X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the existence of invariant (and even hyperinvariant) subspaces of bounded operators on a non-archimedean Banach space E=(E,.) over a valued field K equipped with a non-trivial non-archimedean valuation |.|. Specifically, we consider compact operators and operators that commute with a compact operator. First we show that if E has a base, then any compact operator T such that limnTn1n>0 has a finite-dimensional hyperinvariant subspace. Next we show that if K is locally compact, then every compact operator T on E has a hyperinvariant subspace. Afterward, assuming that K is spherically complete or E is of countable type, we provide a necessary condition for a bounded operator on E to have a hyperinvariant subspace. We demonstrate that the classical Lomonosov Invariant Subspace theorem does not hold in the case where K is non-spherically complete. Finally, we prove Lomonosov type theorem for spectral quasinilpotent operators, when K is locally compact.
罗蒙诺索夫类型定理和非拱顶巴拿赫空间的不变子空间问题
在本文中,我们研究了有界算子在一个有价域 K 上的非archimedean Banach 空间 E=(E,‖.‖)上的不变(甚至超不变)子空间的存在性,该有价域 K 配备了一个非三元非archimedean 估值|.|。具体来说,我们考虑紧凑算子和与紧凑算子相乘的算子。首先,我们证明,如果 E 有一个基,那么任何使 limn‖Tn‖1n>0 的紧凑算子 T 都有一个有限维的超变子空间。接下来我们证明,如果 K 是局部紧凑的,那么 E 上的每个紧凑算子 T 都有一个超不变子空间。之后,假设 K 是球面完备的或 E 是可数类型的,我们提供了 E 上有界算子具有超不变子空间的必要条件。我们证明了经典的罗蒙诺索夫不变子空间定理在 K 非球面完备的情况下不成立。最后,当 K 局部紧凑时,我们证明了谱准无偶算子的罗蒙诺索夫类型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信