On Banaś modulus of smoothness and Gao Pythagorean constant of Lp(μ)

IF 1.2 3区 数学 Q1 MATHEMATICS
Alireza Amini-Harandi, Malihe Peyvaste
{"title":"On Banaś modulus of smoothness and Gao Pythagorean constant of Lp(μ)","authors":"Alireza Amini-Harandi,&nbsp;Malihe Peyvaste","doi":"10.1016/j.jmaa.2024.129046","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we first compute the Banaś modulus of smoothness of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, which gives a solution to the problem posed by Banaś in 1986 (see Problem 4 of Banas (1986) <span><span>[1]</span></span>). Then, we introduce and calculate Gao Pythagorean constant of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, which extends and improves some main results of Gao (2006) <span><span>[3]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129046"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009685","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first compute the Banaś modulus of smoothness of Lp(μ), which gives a solution to the problem posed by Banaś in 1986 (see Problem 4 of Banas (1986) [1]). Then, we introduce and calculate Gao Pythagorean constant of Lp(μ), which extends and improves some main results of Gao (2006) [3].
论 Lp(μ) 的巴纳希平滑模量和高毕达哥拉斯常数
在本文中,我们首先计算了 Lp(μ) 的巴纳希平滑度模量,这给出了巴纳希在 1986 年提出的问题的一个解决方案(见 Banas (1986) [1] 的问题 4)。然后,我们引入并计算了 Lp(μ) 的高毕达哥拉斯常数,扩展并改进了 Gao (2006) [3] 的一些主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信