{"title":"Shape reconstruction of a cavity with impedance boundary condition via the reciprocity gap method","authors":"Xueping Chen, Yuan Li","doi":"10.1016/j.jmaa.2024.129034","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an interior inverse scattering problem of reconstructing the shape of a cavity with impedance boundary condition from measured Cauchy data of the total field. The incident point sources and the measurements are distributed on two different manifolds inside the cavity. We first prove that the boundary of the cavity and the surface impedance can be uniquely determined by the scattered field data on the measurement manifold. Then we develop a reciprocity gap (RG) method to reconstruct the cavity. The theoretical analysis shows the uniquely solvability and existence of the approximate solution for the linear integral equation constructed in the RG method. We also prove that the shape of the cavity can be characterized by the blow-up property of the approximate solution of the proposed integral equation. Numerical examples are presented to verify the feasibility of the RG method.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129034"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009569","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an interior inverse scattering problem of reconstructing the shape of a cavity with impedance boundary condition from measured Cauchy data of the total field. The incident point sources and the measurements are distributed on two different manifolds inside the cavity. We first prove that the boundary of the cavity and the surface impedance can be uniquely determined by the scattered field data on the measurement manifold. Then we develop a reciprocity gap (RG) method to reconstruct the cavity. The theoretical analysis shows the uniquely solvability and existence of the approximate solution for the linear integral equation constructed in the RG method. We also prove that the shape of the cavity can be characterized by the blow-up property of the approximate solution of the proposed integral equation. Numerical examples are presented to verify the feasibility of the RG method.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.